Authors: Irene Würdinger

Title: Production, Development and Function of the Vocalization in four Species of Geese (Anser indicus, A. ruficollis, A. albifrons and Branta canadensis)

Title in Foreign Language: Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsetypen (Anser indicus, A. ruficollis, A. albifrons und Branta canadensis)

Journal: Zeitschrift für Tierpsychologie

Publisher: Paul Parey

Place of Publication: Berlin and Hamburg

Year of Publication: 1970

Volume: 27

Number of Pages: 237 - 302

Reference in English: Journal for animal psychology

Reference in French: Zeitschrift für Tierpsychologie

Requesting Department: Secretary of State of Canada

Branch or Division: National Museums of Canada

Person Requesting: Mr. S.D. MacDonald

Date of Request: 22.9.1970
From the Max Planck Institute for Behavioural Physiology, Beowitchen and Erling-Anslohn

PRODUCTION, DEVELOPMENT AND FUNCTION OF THE VOCALIZATION IN FOUR SPECIES OF GEESE

(Anser indicus, A. caerulescens, A. albifrons and Branta canadensis)

By Irene Würdinger*

With 56 Figures

Received December 2, 1968

CONTENTS

1. Introduction 2
 Statement of theme 4
 Material and Method. 4
2. Introduction of the sound types. 7
3. Anatomy of the sound-producing organs 11
 Description of the organs 13
 Development 21
4. Mechanism of sound production 24

* This work has been accepted as thesis by the University of Munich.

UNEDITED DRAFT TRANSLATION
Only for information
TRADUCTION NON REVISÉE
Information seulement
1.1. Introduction

Acknowledgement

I thank Prof. E. Lorenz for the suggestion for this work, for his untiring interest and continuous support; Prof. H. Autrum for suggestions and criticism; Dr. Kramer for patient advice on physical questions; Drs. H. Fischer, K. Schöne and W. Wickler for the critical examination of the manuscript; Mr. H. Kacher for advice and help with the illustrations and Miss I. von Wuthenau for the execution of the drawings.

I thank the Deutsche Forschungsgemeinschaft for the apparatus put at my disposal.

Since 366 B.C., when Jupiter's sacred geese saved the Capitol through their cries, so many authors have written about the voices of adult geese that they will not all be enumerated here. The less striking voices of the young geese have been treated only in recent times, thus by Naumann (1820-60), Heinroth (1910), Lorenz (1935), Fischer (1965), and Kear (1968). Naumann speaks about the peeping of the young geese in general, without distinguishing the individual sounds, but he describes
very vividly the breaking of the voice. Heinroth applied mostly remembered names, which usually correspond to the situation, to the different sounds. Since Heinroth's designations have not only been augmented and enlarged in the German literature, but appear also in the foreign language literature either in literal translations or as technical terms. I have retained them, although, as Kear expressed it, "...a few names suffer from anthropomorphic connotations". Fischer has treated the sounds of the young geese in more detail, especially in regard to motivation and the development of the "vee" sound that leads to the triumphal cries of adult geese. Kear finally has given a clear descriptive list of the sounds that occur in very young anatids. She has listed also the names of the sounds.
1.2. Statement of the theme

The extent of the questions that have been generated by and been treated in the present work has broadened during the course of the investigations. At first had been examined the development of the sounds, the development of pitch, of strength and duration. Then the relations of the sounds to activities and situations were tested in regard to their regularity. This led to the question about the function of the vocalizations.

The results obtained for the different species were in each case to be compared with one another. The types of sound in the individual species with the same names were at first considered to be hypothetically homologous; that they are homologous is to be proved in the discussion.

The production of the sounds is connected with certain structures of the respiratory organs: are thus changes in the physical data to be traced back to changes in the anatomical structures? In order to answer this question, it was necessary to clarify the mechanism of sound production and to trace the development of the organs for producing the sounds.

In order to understand them more easily, the sound types and a few of their characteristic properties will be presented first, after which will be treated the anatomy, as usual.

1.3. Material and method

The investigations were carried out on a total of 46 animals of six species; this number can be divided according to the method of rearing as follows:
Table 1. Division of the animals investigated according to the method of rearing.

<table>
<thead>
<tr>
<th>Species</th>
<th>By Anser</th>
<th>With Anser platyrhynchos</th>
<th>As Kaspar Hauser</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Anser crerulescens</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Anser brachyrhynchos</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Anser cygnoides</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Anser brachyrhynchos and *A. cygnoides* were not taken into consideration for the evaluation of the sounds, because the number of the animals investigated was too small. Dr. Fischer kindly put the tape recordings of the Kaspar Hauser animals at my disposal.

The geese that had been raised by their natural parents on Lake Ess were accustomed to my person and the recording instrument through feeding, so that observation free of disturbances became possible.

The goslings destined for hand rearing were incubated in an incubator. The groups to be reared were composed of goslings of different ages and species according to the number and hatching dates of the available eggs. During rearing the goslings had the maximum freedom of their own actions, that is, the author shared the life of the young geese until they became capable of flight. The fledged geese were still observed for about five hours per day.

As regards voice, the goose becomes mature only after the end of a second period of growth during the second year of life, that is, at an age of about a year and a half. Since only a few individuals could be
observed continuously for one and one-half years during the development of their voice, the period evaluated in this work amounts to 80 days per specimen, beginning on the day of hatching. Within this time the goose has completed its first period of development, it is able to fly and has moulted fully.

The vocalizations used for the comparison of species, especially those for the consideration of the physical parameters, were recorded under constant conditions with a Nagra III Telefunken recorder (tape speed 9 and 19 cm/sec). The microphone (Type MI 421) was held about 3 to 5 cm from the bill of the goose. To this must be added recordings in the

![Graph](image)

Fig. 2. The evaluation of the spectrograms.

open that were scattered through the day, with notes on situation and activities. Sound spectrograms were prepared from the recordings after the method of Schleidt (1964). They were analysed according to frequency and time and the relative intensities were calculated; the absolute intensity was measured with a phonometer. In order to ascertain the correlation of certain sound types with characteristic movements, activities and situations, the tape recording notes were evaluated with the aid of a polygraph. The evaluation of the spectrograms is shown in Fig. 2:
The evaluation of the sounds by means of the spectrograms is a relatively coarse method, since the frequencies in the spectrograms used were traced at separations of 100 Hz and their width fluctuates with intensity. This can lead to distortions in the duration of the syllables. However, since all spectrograms were made in the same way, the errors of evaluation are probably distributed uniformly and they do not play a role during comparative inspection that would lead to erroneous results. The drawbacks are compensated by the gain of a new characteristic for the evaluation of the sounds, namely, their shape in the spectrograms.

All the following statements apply to all species and the entire time of observations, unless specific species are expressly referred to.

2. INTRODUCTION OF THE SOUND TYPES

2.1. Definition of the concept sound

A tone is defined physically as a mechanical change in density of a medium with definite periodicity and velocity. The periodicity can be expressed in oscillations per time (1 Hertz [Hz] = 1 oscillation/sec), with a height of amplitude, the second power of which is proportional to the strength of the sound or intensity (measured in db). The velocity is constant for the medium in question (in air 330 m/sec). A sound consists very rarely of a pure tone; in general it is characterized by a certain ordered pattern of oscillations. An unordered chaos of oscillations is a noise. In addition to a certain number of oscillations a sound is defined by the number of overtones and its duration.

Alongside of the physical definition, I should like to introduce
a physiological; the term sound is to be applied to the voiced expression that is produced during an expiration.

The sounds of young geese are characterized by a multitude of features; the shape of a sound in the spectrogram, the data given in the physical definition, their connection with activities and situations and their function. One obtains a schematic arrangement of the sounds that appears to be valid not only for one species, one can rather establish similar relations for every species. I have designed as types those groups of sounds that can be distinguished from other sounds. These are:

1. multisyllabic sounds: trills, contact sounds, greeting.
2. monosyllabic sounds: lamenting, weeping, warning, distress calls.
3. noises: hissing, moaning, sneezing, clicks etc.

In dividing the sounds into multisyllabic and monosyllabic sounds, I follow the definitions of Tembrock (1964), Marler (1961) and Mulligan (1963):

Tembrock: single sounds

- monosyllabic (short sounds) warning, weeping, lamenting
- multisyllabic contact sounds, greeting (and trilling)

The definition of trilling has not been taken over from Tembrock (Tembrock had listed the trill under monosyllabic with changing impulse sequence), but from Marler (1961) and Mulligan (1963), since in the trill the individual syllables can in part be recognized distinctly.

Mulligan: note: a sound producing a continuous trace in the sound spectrograph

syllable: a simple or complex element that is serially repeated
trill: a consecutive series of similar syllables.

Harrier notes: basic units, each of which is one continuous vocal utterance. A single note might be modulated in frequency or amplitude.

syllables: notes, arranged in groups, to form more or less coherent units.

trill: syllables, repeated consecutively two or more times.

2.2 Spectrograms for the introduction of the sound types

The spectrograms shown in Figs. 3 to 7 represent the sound types of a three-day-old individual of each of the species. The ordinate gives the frequency in Hz, the abscissa the time in seconds. The data given in Table 2 relate only to the fundamental tones.

![Spectrograms](image)

Fig. 3. Weeping.
Sound of weeping, Heinrich (1910); whistle of being deserted, Lorenz (1935); weeping, Fabricius (1951); distress call, Kear (1967)

Upper left: Anser indicus, right: A. albifrons, lower left: A. cyanopterus, right: Branta canadensis.

Ordinate: distance between frequency marks is 1000 Hz, they begin with 1 kHz. Abscissa: distance between time marks is 0.5 sec.
The warning sound has not been included in the sound types, since normally it is uttered only by geese that are able to fly; however, it can be triggered experimentally by decoys of birds of prey already at the age of one or two days (Fig. 8).

The triggering of the distress calls had the undesirable effect that afterward the animal was extremely shy of humans for a considerable span of time, which endangered the continuity of the observations and recordings. Distress calls were therefore not considered.

In addition to the two monosyllabic sound types there are missing in the developmental series the hissing and also the clicks, sneezing etc. The last-named are caused by diseases. As regards hissing, its characteristic feature, that is, that of a noise, is retained unchanged during the period of development. Klicks can appear during the last two days in the egg and during the first four or five days of life outside the egg; they are caused by an edema of the lungs.

The only instrumental sound produced by young geese is the tapping of the egg tooth against the egg shell.
Fig. 5. Contact sounds (left column).
Conversational sound, Heinroth (1910); contact sound, Heinroth (1924); calling note, Fabricius (1951); contact call, Collias (1962); vee-sound without neck stretching, Fischer (1965); pleasure call, Kear (1967). From upper to lower: A. indicus, caerulescens, albirostra, B. canadensis.

Fig. 6. Greeting (centre column).
Greeting, Heinroth (1924); greeting call, Collias (1962); vee-sound with neck stretching, Fischer (1965), otherwise as Fig. 5.

Fig. 7. Trilling (right column).
Sleeping sound, Heinroth (1910); trill, Fischer (1965); sleepy call, Kear (1967); otherwise as Figs. 3 and 5.

3. Anatomy of the
Sound Producing Organs
3.1. Introduction
Sounds are produced in birds as in mammals through special interplay of the breathing organs. Ranasent in 1754 was the first to recognize that the organs that are made to vibrate in birds are not
<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency range</th>
<th>Intensity</th>
<th>Intensity</th>
<th>No.</th>
<th>Time/Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hz</td>
<td>Hz</td>
<td>db</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/sound</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1100 - 2100</td>
<td>1740</td>
<td>36 - 50</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1140 - 2200</td>
<td>1740</td>
<td>36 - 50</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1200 - 2800</td>
<td>2400</td>
<td>95 - 65</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>1375 - 2750</td>
<td>2200</td>
<td>25 - 40</td>
<td>1</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fig. 8, Warning sound of *A. indicus*. Otherwise as Figs. 3 and 5.
the homologues of those in mammals. He also knew that in birds one has
to look at the caudal end of the trachea and not at the cranial end when
searching for the vibrating structures. He also supposed that the free
suspension of the trachea, syrinx and bronchi in the *saccus clavicularis*
that is accessible from all sides plays a decisive role in the production
of sound.

Hippell (1935) has clarified the fundamental mode of operation
and the significance of the *s. clavicularis* and of the *membrana tym-
paniformes* and has elucidated the acoustical relations between trachea
and syrinx through his work on models and his blowing experiments.

Sutherland (1965) investigated the relations of size and elas-
ticity of the *m. tympaniformes* and of the shape of the trachea to the
pitch and intensity of the sounds in two subspecies of *A. caerulescens.*

Work with stroboscope and high-speed camera (Paulaen 1967) finally made
possible the observation of the vibrating *m. tympaniformes.* The opinions
of the individual authors in regard to the mechanism of sound production
are treated in the discussion about the relation of the anatomical find-
dings to sound production.

3.2. Description of the organs

The spaces, organs and muscles that are participating in sound
production are fundamentally the same for all species. They become func-
tional at the moment when the bill of the goosling penetrates into the
air space of the egg, that is, about 72 to 80 hr before hatching. Con-
sequently they change according to the laws of growth.

The description refers above all to animals capable of flight
and of an age of between 80 and 135 days, that is, to that stage at which
was concluded the observation of the sound development.

3.2.1. Trachea

The trachea begins at its cranial end with the larynx, which is formed by the thyroid and cricoid cartilages and the extension of the former; it can be opened and closed by the musculi apertor et sphincter laryngis. The trachea then continues caudad as a fully closed tube that is stiffened by cartilaginous rings. Its inner diameter diminishes to a point about half-way along its length, then increases again to reach its maximum at about three-fourth of its length; from there on it is reduced again as far as the beginning of the bulla, which is formed by the last four or five caudal cartilaginous rings. Loop formations of the trachea or special modifications of the bulla that are found in many other anatids are lacking in geese.

For more than nine-tenths of its length the trachea is accompanied by the paired musculus trachealis that originates at the thyroid cartilage and diffuses above the bulla in the surface of the trachea. It can actively shorten the trachea, which becomes extended passively when the neck is stretched out. A further pair of muscles begins at the dorsal origin of the coracoid and is inserted after a U-shaped course at the cranial side of the insertion of m. trachealis, where it diffuses into this. A. indicus and albifrons possess in addition a second pair of muscles, which is inserted at the cranial side of the first pair and which originates at the dorso-cranial margin of the sternum. These pairs of muscles change the inner diameter of the trachea.

Table 3 shows the length and diameter of the trachea, the length of m. trachealis and the places of insertion of musculi yapilo-trachealis.
The percentage proportions of length of trachea to length of m. trachealis and to the branching-off of m. ypsilon-trachealis and the ratio of largest to smallest inner diameter of the trachea appear to be constant for the species (also during development).

3.2.2. Syrinx

As syrinx is designated the region that is situated between the caudal end of the trachea and the bronchi, which in the gese is formed by two pairs of cutaneous membranes, the membranae tympaniformes. The external sides of each pair, the m. t. externae, extend between the first and second hemi-rings of the bronchi; the first hemi-ring is closely connected to the last tracheal rings that are fused into the bulla. The m. t. internae are fastened cranially to the flange, which is formed in the median plane of the trachea by the last tracheal ring; laterally they are connected at an acute angle with the m. externae; caudally they are bordered by hemi-rings of the bronchi. The surfaces of the membranes bulge out internally towards the m. externae, thus narrowing the lumen between the membranes. Medio-caudally they are connected with each other by the bronchidemasus, which is more or less strongly developed. The bronchidemasus can be shaped variously, as a narrow bridge or a longer fusion between the bronchial branches. The space enclosed by the m. t. internae, the bronchidemasus and the flange is called foramen interbronnchiale.

In the gese no musculature was found in the region of the syrinx. In Fig. 9 the differences in the species investigated are shown. Fig. 9 and Tables 4 and 5 show that there are several types of syrinx in adult gese.
Table 3. Relation of the length of the trachea to the length of the *musculus trachealis* and the branching-off of the *musculus ventralis-trachealis* and inner diameter of the trachea and relation of largest to smallest inner diameter (all data from freshly killed animals).

<table>
<thead>
<tr>
<th>Length trachea/cm</th>
<th>Length branch trachea/cm</th>
<th>Ins.</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>trachea/cm</td>
<td>branch trachea/cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>8.6</td>
<td>8.1</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>18.8</td>
<td>17.6</td>
<td>93.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>10.3</td>
<td>9.4</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>20.2</td>
<td>18.2</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>40.2</td>
<td>37.2</td>
<td>92.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.45</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>30.0</td>
<td>28.3</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>47.5</td>
<td>17.0</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
</tbody>
</table>

(a) in the male both membrane surfaces are of about the same size; in the female the inner surfaces are much larger than the outer; the *bronchidemum* is long (between 0.7 and 1.0 cm in adult animals). Sexual dimorphism appears to exist not only in the size of the *m. t. externae*, but also in the size of the volume of the *saccus clavicularis*; the males having a smaller volume than the females. The species that belong to this group, *A. albifrons*, *brachyrhynchos* and *fabalis*, show as
adult birds a distinct sexual dimorphism in the voice, the sounds of the
ganders being substantially higher in pitch than those of the females. [p. 266]

(b) The *m. tympan. internae* are very much longer than the *m. t.
externae*, they are connected by a very narrow cutaneous *bronchidesmus* and
extend almost as far as the entrance of the bronchi into the lungs. The
size of the membrane does not differ significantly in the sexes. There is
no dimorphism in the voice. To this type belong *A. caeruleascens*, *indicus*,
ganser and *E. canadensis*.

c) I did not succeed in finding super-long *m. externae* in the
specimens examined, which are mentioned by Stresemann in *E. canadensis*;
however, the *m. externae* were subdivided beginning at the third bronchial
hemi-ring. Presumably my investigations were carried out on another race;
E. canadensis has, of course, been split into a number of races.

![Fig. 9. Syrinx. Comparison of the four species; from
left to right: A. indicus, caeruleascens, albifrons,
E. canadensis. (1) Trachea, (2) bulla, (3) membranae
tympaniformes externae, (4) m. t. internae, (5) bron-
chidesmus, (6) foramen interbronchiale, (7) bronchi.

3.2.3. Bronchi

Bronchi is the name of the paired tubes that attach caudad to
the *m. tympaniformes* and lead to the lungs. The bronchi are distinctly
separate from the *m. t. internae* only in those species in which the
membrane is relatively short and limited by a cartilaginous ring, after
Table 4. Relations between length of trachea, size of surface of the membrane and the ratio of m. t. externae to m. t. internae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Length of trachea cm</th>
<th>Surface of m. t. internae mm²</th>
<th>Surface of m. t. externae mm²</th>
<th>Ratio m. t. internae/m. t. externae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>8.6 cm</td>
<td>9.0</td>
<td>1.78</td>
<td>1.48 : 1</td>
</tr>
<tr>
<td></td>
<td>10.7 cm</td>
<td>8.9</td>
<td>4.58</td>
<td>1.0 : 1</td>
</tr>
<tr>
<td></td>
<td>16.8 cm</td>
<td>60.0</td>
<td>71.0</td>
<td>2.85 : 1</td>
</tr>
<tr>
<td></td>
<td>28.0 cm</td>
<td>181.0</td>
<td>55.0</td>
<td>2.53 : 1</td>
</tr>
<tr>
<td></td>
<td>33.0 cm</td>
<td>247.0</td>
<td>70.0</td>
<td>3.5 : 1</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>10.3 cm</td>
<td>12.5</td>
<td>7.0</td>
<td>1.78 : 1</td>
</tr>
<tr>
<td></td>
<td>20.2 cm</td>
<td>71.5</td>
<td>26.7</td>
<td>2.67 : 1</td>
</tr>
<tr>
<td></td>
<td>24.0 cm</td>
<td>84.0</td>
<td>48.0</td>
<td>1.76 : 1</td>
</tr>
<tr>
<td></td>
<td>38.0 cm</td>
<td>250.0</td>
<td>156.0</td>
<td>1.56 : 1</td>
</tr>
<tr>
<td></td>
<td>40.0 cm</td>
<td>289.0</td>
<td>168.0</td>
<td>1.75 : 1</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>30.0 cm</td>
<td>80.0</td>
<td>73.0</td>
<td>1.12 : 1</td>
</tr>
<tr>
<td></td>
<td>10.6 cm</td>
<td>168.0</td>
<td>63.0</td>
<td>2.56 : 1</td>
</tr>
<tr>
<td>Anser fabalis</td>
<td>37.8 cm</td>
<td>77.0</td>
<td>57.7</td>
<td>1.32 : 1</td>
</tr>
<tr>
<td></td>
<td>17.9 cm</td>
<td>192.5</td>
<td>67.5</td>
<td>2.86 : 1</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>14.8 cm</td>
<td>19.5</td>
<td>8.0</td>
<td>2.65 : 1</td>
</tr>
<tr>
<td></td>
<td>15.5 cm</td>
<td>38.5</td>
<td>18.5</td>
<td>2.06 : 1</td>
</tr>
<tr>
<td></td>
<td>12.6 cm</td>
<td>180.0</td>
<td>150.0</td>
<td>1.20 : 1</td>
</tr>
<tr>
<td></td>
<td>16.3 cm</td>
<td>290.0</td>
<td>168.0</td>
<td>1.70 : 1</td>
</tr>
</tbody>
</table>

Table 5. Length of bronchidemus*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Bronchidemus length of fusion cm</th>
<th>Species</th>
<th>Bronchidemus length of fusion cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. albifrons</td>
<td>10.0 cm</td>
<td>A. anser</td>
<td>0.5 cm</td>
</tr>
<tr>
<td>A. brachyrhynchus</td>
<td>0.7 cm</td>
<td>A. caerulescens</td>
<td>0.2 cm</td>
</tr>
<tr>
<td>A. fabalis</td>
<td>0.6 cm</td>
<td>A. indicus</td>
<td>0.2 cm</td>
</tr>
</tbody>
</table>

* In addition to my own preparations some specimens from the State Collection Heinroth and the collection in Slimbridge (England) have been used in the preparation of Tables 4 and 5.

which at least six cartilaginous rings follow until the entrance into the lungs and that have a long bronchidemus (A. albifrons, brachyrhynchus, fabalis). In the other species (A. indicus, caerulescens, anser, B. canadensis), the m. t. internae reach barely as far as the entrance
into the lungs: (only the last extrapulmonal brochial ring forms their boundary here); one might designate perhaps as bronchial region of the \textit{m. t. internae} the area following the point of fusion of the two membranes. In the species named first, the entire tube is reinforced by cartilaginous rings, in the other species in each case it is only the outer sides of the bronchi that are stiffened by arcs of cartilage, whereas the inner sides that are facing each other are formed by the elongated \textit{m. t. internae}.

At the beginning of the bronchi or of the bronchial region, the tubes are enlarged to the mean internal diameter of the trachea to which they pertain. The bronchi then contract to about 40 per cent of this diameter at the entrance into the lungs. The number of cartilaginous rings or arcs is subject to individual fluctuations, in addition, the number can vary between the two bronchial halves.

3.2.4. Air sacs

The air sacs are called expiratory or inspiratory according to the manner in which they are supplied with air.

Expiratory unpaired \textit{naccus clavicula
gis:}

It surrounds the upper breast space. Its walls extend cranio-
laterally along the arms of the clavicle to the shoulder girdle and cervical vertebrae and they form, while excluding the oesophagus, a cover that separates the neck from the thoracic space. This cover is pierced by the trachea and can be inflated. The trachea lies loosely on this cover from the sternum to where it is fastened to the cervical vertebrae. Laterally the \textit{naccus} reaches as far as the lungs, caudad as far as the heart, dorsally the sternum forms its boundary. Trachea, syrinx and bronchi, as
well as the aorta and the large arteries that branch off towards the head and arms pass through the interior space of the *saccus* clavicularis, where they are covered by the mucous epithelium of the *saccus* and suspended freely from the *musculi vpsilo-trachealis*. The air canals providing ingress into and egress from the *saccus clavicularis* branch off the ventral bronchi of the lungs and connect to the *saccus* closely below the point of egress of the *arteria clavicularis*.

Inspiratory air sacs, *sacci thoracales* and *abdominalis*.

The paired *sacci thoracales* adjoin laterally the *saccus clavicularis*, with which they are not connected directly, and extend along the ribs.

![Image](image.png)

Fig. 10. Upper part of the *saccus clavicularis* of *A. indicus*. Left without, right with air filling.

The feed canals branch off the main bronchus, the exit canals connect to the ventral bronchus. The paired *sacci abdominalis*, which consist of a series of bulges, extend through the open spaces of the ventral region. Their feed canals also branch off the main bronchus and the exit canals connect to the ventral bronchus. The air sacs are not interconnected.

The exchange of air always takes place through the lungs.

Here have been mentioned only the most important air sacs.

Measurements of the volumes of the air sacs have been planned. It is not yet known unambiguously how the flow of air to the sacs is regulated.
Some of the authors (Bernd, Meise, Stresemann) report check valves, others (Rüppell) doubt the existence of valves. It is true, these authors do not specify the species. By investigations did not provide any evidence of valves in geese.

Like the syrinx, the air sacs do not possess a musculature of their own. The inspiratory air sacs are collapsed or inflated through muscles of breast, ribs and venter. The most important are: *m. intercostales*, *m. obliqui internus et externus*, *m. transversus*. The expiratory air sac is being filled during expiration and during the production of sounds with the air that is pressed out from the inspiratory air sacs, as far as the air does not escape through the bronchi.

3.3. Development

The general development of the animals is represented by the increase in weight with advancing age in Figs. 11a to d. *A. albifrons*, *caerulescens* and *B. canadensis* show a rate of growth that is about the same and amounts to 60 to 64 g per day (Figs. 11b to d). In contrast, *A. indicus* grows only by about 40 g per day (Fig. 11a). This might be affected by the normal geographical latitude of the breeding places. *A. indicus* breeds between the 25th and 50th parallel in Tibet and Mongolia, whereas *albifrons* breeds in northern Scandinavia and Siberia and *caerulescens* and *B. canadensis* breed in Greenland, northern Canada and Alaska, that is, north of the 65th parallel. The arctic species develop faster than the Central Asiatic *A. indicus*. The two most northerly species (*albifrons* and *caerulescens*) attain a pause in growth at about 35 to 40 days, they are able to fly a few days later; *indicus* attains the pause in growth with 50 days and is able to fly at about 55 days. *B. canadensis*
grows until about the 60th day, but can fly already a few days before that. In all species a second phase of growth begins in the second spring of their life.

The figures cited refer to healthy, normally developed goslings. Sexual dimorphism could be found during the first period of growth only in *B. canadensis*, but it could not be established that it is significant with the amount of material available.

\[\text{Fig. 11. Relationship between age and body weight. The points correspond to single measurements. The points marked with sex symbols represent the means for five adult animals each.} \]

\[\text{Fig. 12 shows the relationship between weight increase and longitudinal growth of the trachea. Apparently, the length of the trachea} \]
does not increase isometrically with the weight. However, tracheal growth appears to be weight dependent in the same proportion in all species of Anser. Values relative to tracheal length can thus be compared between individuals of the same weight independently of species and age.

![Graph showing relationship between weight and tracheal length.](image)

Fig. 12. Relationship between weight and tracheal length. The points are individual values of freshly killed animals. The corresponding values for the size of the membrane in these animals are presented in Fig. 13. The arrow indicates the beginning of the breaking of the voice.

Fig. 13 shows the relationship between tracheal length and the size of the *membranae tympaniformes*. The data from *A. indicus* as well as the development of the frequencies indicate that the *m. tympaniformes* continue to grow after the longitudinal growth of the trachea has ceased.

![Graph showing relationship between tracheal length and surface area.](image)

Fig. 13. Relationship between tracheal length and the size of the surface of the *membranae tympaniformes* in:

- *A. indicus*
 - Membr. tymp. int.
 - Membr. tymp. ext.
- *A. caerulescens*
 - Membr. tymp. int.
 - Membr. tymp. ext.
- *Branta canadensis*
 - Membr. tymp. int.
 - Membr. tymp. ext.

Other explanations as in Fig. 12.

Unfortunately, no data for this are available. As is shown by Table 4, there are considerable differences in the absolute measurements of the surfaces as well as in the proportions of the *m. t. externae* to the *m. t. internae* in the individual species. The pair of membranes diverge most
strongly in regard to their surfaces in *A. indicus* and less strongly so
in *caerulcerca* and *B. canadensis*. A sexual dimorphism appears to be
present only in *albifrons* in regard to the size of the m. i. internae.
The vocal dimorphism in *albifrons* develops only after the fifth month.
At this time the growth of the trachea is completed, but not that of the
membrane.

The effect on the physical parameters of the sounds that is
exerted by the growth in length and width of the trachea will not be
presented until the discussion of the parameters.

4. MECHANISM OF SOUND PRODUCTION

4.1. Method

The production of the sounds was observed on the living animal,
but it was also investigated through blowing experiments under different
conditions on the dead animal (in *A. albifrons* and *B. canadensis* only in
adult individuals, in other species also in goslings). The data on living
animals were obtained in part through the evaluation of photographs, in
part through direct observation of very tame geese, which permitted
touching with the hand, without being disturbed. This made it possible
to follow by touch the inflation and deflation of the air sacs during
the production of sounds.

The blowing experiments on dead animals were carried out accord-
ing to the method of Hüppell. A plastic tube of 5 to 9 mm diameter was
inserted through an opening that was kept as small as possible into one
of the abdominal or thoracic air sacs. It was possible to produce sounds
through blowing with the mouth or with compressed air. The spectrograms
of these sounds were then examined in detail. Changes in the air pressure
in the individual air sacs could be produced either through opening of a further air sac and additional blowing or through loading of the inflated air sac with suitable weights. After some practice it became possible to produce artificially all sound types, with the exception of trilling and hissing. In order to investigate the effect of the length of the trachea, this was freed and repeatedly shortened by 1 or 2 cm and then blown.

4.2. Production of the sounds

The apparatus for the production of sounds is a part of the respiration apparatus. The production of a sound is thus connected correspondingly intimately with respiration and this will therefore be described first.

Inhalation

When the costal bows are being lifted up, the thoracic and abdominal air sacs become dilated, the air streams through the trachea and bronchi into the lungs and into the inspiratory air sacs. At the same time the air is sucked from the expiratory air sacs and transferred to the inspiratory air sacs by way of the lungs.

Exhalation

During exhalation the ventral muscles press a small part of the air from the inspiratory air sacs through the lungs into the expiratory air sacs, while a larger part flows through bronchi and trachea to the outside. During normal breathing one can see movements of the thorax and the ventral space, the anterior part of the breast remains almost motionless. The air contained in the body of a bird can be moved from the
expiratory air sacs to the inspiratory ones in the manner of coupled bellows, without the necessity of taking in new air from the outside.

Vocalization

When sounds are to be uttered, the air in the inspiratory air sacs is pressed suddenly and under high pressure into the anterior body of the bird; the \textit{sacculus clavicularis} becomes filled with air, it bulges out (Fig. 14) and exerts pressure on the \textit{membrana tympaniformes}. At the same time the body of air flowing out from the bronchi impinges on the tensioned membrane, causes it to vibrate and thus produces the tone. Thus two pressure components have to act simultaneously on the membrane in order to start it to oscillate: an "external" pressure, which is provided by the confined space of the \textit{s. clavicularis} and an "internal" pressure, that is, the pressure of the exhalation stream. The relationship between the "external" and "internal" pressures will be defined below. According to Hülppell the effect of the external pressure can be generated by an artificial pressure chamber, or, as has been shown by Paulsen, it can be imitated by stretching by hand. The effect of the external pressure,
namely, the reinforcement of the membrane tension, can, however, not be produced solely by the tracheal musculature, as will be shown in the following discussion.

No inspiratory sound production is known in geese; in contrast to this, inspiratory sound production is, however, found in the Oscines.

4.3. Function of the **saccus clavicularis**

The discussion regarding the function of the **s. clavicularis** is based on the following points of view: Herissaut (1753) and Húppell (1953) see in the position of the syrinx in the clavicular air sac "... the physiological basis and prerequisite for the special kind of sound production in the vocal apparatus of the birds (Húppell, p. 450). Both Húppell and Herissaut opened the **s. clavicularis** in the living animal and in objects used for artificial blowing, whereafter the voice of the animals disappeared, it reappeared after closing the opening. I have repeated this experiment with the same result. The clinical history and the findings at dissection of two experimental animals show similar results: the birds suffering from acute diseases of the respiratory organs became mute during the course of the disease. They did not regain their voice before death. It appeared to be characteristic that the movements of the breast shown in Fig. 14 were not seen during the well-recognizable attempts at vocalization and that breathing became very shallow and rapid. Dissection showed that the ventral bronchi and other parts of the lungs, as well as the **s. clavicularis** and the **sacci thoracales** were filled with a secretion that obstructed the inlet and outlet canals. The disappearance of the voice and its restoration is thus directly connected with the air
pressure in the *g. clavicularis*. The findings and the direct observations on the living bird can thus be interpreted to show that during vocalization a sudden rise of pressure in the *g. clavicularis* tensions the *m. tympaniformis* sufficiently for sound production.

Although Huppell assumed that the air pressure in the *g. clavicu-
laris* has an effect on the sound production, he did not develop precise ideas about the mechanism of action. He believed that changes in the tension of the membrane were caused less through what I have called the "external" pressure, that is, the pressure in the *g. clavicularis*, but rather through an increase in the exhalation current in the bronchi, that is, through an increase in the "internal" pressure and likewise through the musculature of the syrinx and trachea. Paulsen (1967), on the contrary, believes that the muscles of the syrinx and trachea alone cause the tension: "in the living animal this tension is produced by tracheal and bronchial trains of muscles. In addition to this, a certain overpressure in the *g. clavicularis* could certainly affect the tone production favourably" (p. 88). Sutherland is of the same opinion.

If one continues along the lines of Huppell's and Paulsen's reasoning, one has to imagine that the shortening of the trachea exerts a pull on the membrane, in order to produce the tension that is necessary for sound production.

For shortening of the trachea one can consider only the paired longitudinal *m. trachealis* (see also description of the trachea, p. 14). The place of insertion of the *m. vps.-trachealis* on the trachea points in the direction of the bronchi; furthermore, it runs in a latero-ventral direction; its contraction would shift the trachea ventrad, as well as change its inside diameter. The work of this pair of muscles as well as
that of the second pair that branches off from the trachea farther cranially would probably be without importance for obtaining a sufficient tension of the membrane.

Finally, no bronchial muscles were found in the species of geese investigated (which were used as a basis also by Paulsen and Sutherland). The \textit{m. trachealis} alone would thus have to provide a sufficiently high tension of the \textit{m. tympaniformes}. That its effect does not suffice for this is evidenced by the loss of the voice in the living animal when the \textit{g. clavicularis} has been opened or has become unable to function for some other reason; it is also evidenced by the stress attitude that must be assumed by goslings during the uttering of high-pitched or of very loud sounds. Paulsen carried out his experiments with trachea and syrinx preparations outside of the air sac, the necessary tension was obtained by artificial stretching of the preparation. He reports: "in all experiments only one of the two vocal organs of the syrinx was in action. The air streamed through the other without moving the membrane. On the sounding side it was necessary to displace the outer membrane slightly medially by finger pressure, so that the inner could vibrate at all" (p. 91). The effect of the air pressure in the \textit{g. clavicularis} could correspond in some ways to the shift of the outer membrane by finger pressure.

On the basis of the arguments against a substantial effect of the tracheal musculature cited above and of the above experiments and my own observations on the living animal, I am of the opinion that the air pressure in the \textit{g. clavicularis} produces the tension in the membrane, that is, at the moment of sound production through the compression by the ventral musculature and the impact of the air in the anterior body of the bird caused by this.
In the preceding discussion only the production of the tension in the membrane that is required primarily for sound production has been considered. At the instant of sound production it is, however, possible that a few of the components of the sound-producing apparatus affect the nascent sound. The effect of these components will be described in the following chapter.

4.4. Articulation

The articulation of the nascent sounds can be affected by the following factors: oscillation of the air pressure in the air sacs, position of the larynx slit, position of the larynx and the root of the tongue, amount of bill opening. It is not possible to determine the priority of one factor or the other, when several are involved. The monosyllabic sounds (lamenting, weeping, later distance call, sounds at departing and taking wing) are being articulated only by the fluctuation of air pressure in and the extent of filling of the air sacs. Bill and slit of larynx are opened widely; they remain open also during the pauses.

During the production of the contact sounds and sounds of greeting one can feel in the air sacs an oscillation in time with the syllables, probably produced by a corresponding rhythmic brief closing of the larynx slit. $A.\; indicus$ has the bill half open during the contact sound, all other species keep it almost closed. During greeting the bill is wide open in all species.

During the sound of trilling a weak oscillation of the air sacs can be noticed and one can see a vibration of the angles of the bill (the $maxill\; levator$ et $retractor\; anguli\; oris$ elevate and lower the bill angles), the bill itself is closed.
During hissing the air stream follows the normal pathway of expiration; there is thus no strong rise in the pressure in the \(g. \ claviculi \)laris; and there are no regular oscillations of the \(g. \ tympaniformer \). Rather, the hissing is produced in the space of bill and mouth: the path of the air stream is constricted through contraction of the \(m. \ hyo-\)mandibularis, transversus and mylohyoideus that press tongue and larynx against the gums; thus are formed lateral slits that cause the formation of the vortices during hissing. The tongue may be retracted more or less strongly. The bill is wide open.

Rüppell surmised: "the articulation of the sounds, that is, the generation of certain accentuated sound configurations is, however, not affected by the space of mouth and bill and restricted completely to the processes in the syrinx" (p. 526). He reported that a cock could still crow after removal of the larynx and he regarded this as support for his opinion. I presume that geese without a larynx may well be able to produce monosyllabic sounds, but that in the articulation of multisyllabic sounds, especially during trilling, the larynx slit also plays a role.

The manner of articulation, as well as the production of tension in the membrane remains invariably the same in all species during the course of development.

5. DEVELOPMENT OF THE VOCALIZATIONS

5.1. Representation in the spectrogram

Since the shape of the spectrogram depends on the parameters of a sound that will be treated in the following, I shall here mention
only briefly the characteristic features: range of frequencies of the sound or syllable, inclusive of the overtones and the duration of the sound.

Fig. 15. A. albirostris, development of the weeping sound. Age in days, top to bottom: 3 days, 24 days, 31 days, 40 days (distance call), 74 days (lamenting).

[Ordinate and abscissa as in Fig. 3]

Fig. 16. B. concolor, development of the weeping sound. Age in days, top to bottom: 3 days, 30 days, 38 days, 77 days (distance call and lamenting), 80 days (distance call in flight).

The spectrograms for one species each show the sounds of one individual for both the sound types depicted.

5.2. Development of the individual physical parameters

5.2.1. Frequency

If one plots the most intensive partial tones separated
according to sound types against time, one obtains families of curves, the tendencies of which are similar (Figs. 20, 21). The values of the frequencies do not show a continuous drop, as might be expected theoretically on the basis of the relation of length of trachea to frequency (Fig. 22). They are rather grouped around several maxima and minima.

Fig. 17. (Left column), *A. caeruleascens*, development of the contact sound. Age in days, top to bottom: 1 day, 9 days, 45 days, 140 days, 2 years and 5 days.

Fig. 18. (Centre column), *A. indicus*, development of the contact sound. Age in days, top to bottom: 3 days, 41 days, 60 days, 70 days, 100 days.

Fig. 19. (Right column), *B. canadensis*, development of the contact sound. Age in days, top to bottom: 1 day, 26 days, 49 days, 77 days, 1 year and 21 days.

[Ordinate and abscissa as in Fig. 3.]
Fig. 20. *A. indicus.* Development of weeping sounds in three individuals, I, II, III. The points of the curves represent the means of ten measurements each.

Fig. 21. *A. indicus.* Development of contact sounds and trills in individual I of Fig. 20.

Fig. 22. Relation between length and frequency of an open pipe. The values have been calculated according to the formula: \(L = \frac{f}{2v} \) (\(L = \text{length of pipe}, f = \text{frequency}, v = \text{velocity}, 330 \text{ m/sec} \)).

during the first phase of growth. The sounds in the eggs show the first maximum, the rise to the third maximum appears with the end of the first phase of growth, the appearance of the first kinds of behaviour with a sexual orientation and the breaking of the voice, which is especially distinct in the weeping sounds. The steps in the pitch of a tone are synchronous in all sound types of a species. According to Rüppell, the frequency values can be explained by the relation between syrinx and trachea. He compares the sound production in birds with that in an open pipe; syrinx and trachea are described as a closely coupled system, in which the *H. typaniformes* represent the vibrating tongue and the trachea represents the resonator.
When in such a system the size of the vibrating tongue is altered, with the length of the resonator remaining constant, that is, when the *g. tympaniformes* grow, then the frequency of the tone generated will drop and in case of resonance will revert in each case to the natural vibration of the resonator. The relation between maximum and minimum frequency moreover drops in the ratio of integers, 1:2, 2:3, 3:4, 4:5 etc. The magnitude of the frequency range as well as the numerical value of the ratio are dependent on the damping; the greater the damping, the smaller become the steps between tones. If, in addition, the resonator is being lengthened, that is, the trachea also grows, the natural oscillations of both systems change. The curve that then connects the values of the pitch of the tones will show occasionally an irregular pattern of tone steps; this depends on the relation between the growth of the components of the system and shows a general tendency to a drop in frequency.

The first discontinuity in the frequency occurs a few days after hatching. Because the damping in very young goslings might be very great (it is dependent on the inner diameter, the shape, the elasticity and the moisture content of the trachea), the first step in the resonance will not be an octave, but will have a smaller numerical ratio. Actually the ratio for the curves of the weeping sounds in Fig. 23 is 2:3 in *A. indicus*, 3:4 in *caerulercens* and *B. canadensis*, 4:5 in *albifrons*. It is not possible to ascertain reliably the numerical ratio for the subsequent resonance step in all individuals, because the individual measurements had intervals of three to four days between them that were too large to allow to hit exactly the minima and maxima; the third resonance step shows in some species the value of an octave.
Sound types

Mono syllabic sounds

Beginning in the region of the third minimum, the curves of the weeping sounds in all species diverge from those of the other sound types. The weeping sounds show only little scatter in the height of the frequency as well as in the shape of the spectrogram until the third minimum. As is shown by the spectrogram and the physical parameters to be discussed later, however, they then split up into three lines of sound: the first remains at the beginning still at the value of the third minimum, it then makes the tone steps that belong into the normal sequence of the weeping sound; the second rises to the third maximum and drops slowly with advancing age; the third is an intermediate product between the other two sequences and appears only during the short temporal transitional phase that is characterized by the breaking of the voice. The first sound sequence that remains on the minimum proves to be identical with lamenting, the second is a newly appearing sound type, the distance call.

Multisyllabic sounds

The frequency values of the multisyllabic sounds are lying below those of the monosyllabic sounds. An explanation for the lower frequency values of the multisyllabic sounds is a lower pressure in the g. clavicularis in comparison with the pressure for monosyllabic sounds. A breaking of the voice during the time of the third minimum can be heard only in greeting and even there only extremely rarely.

Individual variation

The curves of the sound type in different individuals of one
species show individual variations that are in part considerable. They can be explained by the anatomical variance of the apparatus for producing the sounds and by the different states of development in goslings of the same age (caused by disease etc.) (Fig. 20). The curves for the same sound typer in one species become more uniform when one selects for the abscissa the length of the trachea of the individuals instead of their age, because the length depends on the weight and not on the age (Fig. 23).

Correlation with anatomical findings

In the following two sections it is intended to compare the species and to set the anatomical findings in relation to the curves. For the purpose of comparing the species, the frequency values will be plotted not against time, but against tracheal length.

When one compares the most intensive frequencies of the weeping sounds, one finds that A. indicus produces the deepest tones, followed by caerulescens and B. canadensis and that the sounds of albifrons are the highest. To this corresponds the size relationship of the m. tymp. internae (Fig. 13). A. indicus has the largest m. tymp. internae and albifrons has the smallest. During the first three days, but also later, the frequencies of A. indicus, caerulescens and B. canadensis intersec; to this do not always correspond intersections of the size of the m. tymp. internae of these species. The height of the frequency is not only negatively correlated with the size of the m. tymp. internae. Besides the size of the membrane, its elasticity also has an effect on the pitch of the tone, as has been established by Sutherland. In addition, an increase in the pressure in the q. claviculargis causes an increase in
frequency (through the augmented amount of air in the body of the bird on account of deeper respiration or stretching of the neck).

In each case the position of the maxima and minima of a sound type in the different species allows the conclusion that trachea and tympaniformes in A. indicus and caeruleus show a similar growth relation, which can also be demonstrated on hand of the growth curves.

Frequency range

The distance between the highest and lowest frequency line of the basic tone that is visible in the spectrogram amounts to about one octave and thus has a ratio of 1:2 in the contact sounds and in trilling, for weeping and greeting it is larger than one octave and in lamenting it can also be smaller.

The ratio hardly changes during development, it can drop to an octave in weeping, in contact sounds and trilling it can amount to less than an octave. However, a considerable shift is shown by the temporal share, which the frequencies have in the "sound shape" of the spectrogram. If at first the most intensive frequencies are also those that are
the longest in time, with increasing age the lower frequencies also increase in length, that is, the noise character of the sound increases.

5.2.2. Intensity

Sound types

Beginning with the low trilling sounds, the intensity increases in the sequence of contact sounds, greeting, lamenting to weeping. This sequence applies to all species and remains the same during development. The absolute intensity of the trilling sounds and contact sounds increases slightly during the course of development, that of greeting, lamenting and weeping increases strongly.

In the multisyllabic sounds the intensity of the individual syllables fluctuates more strongly than in monosyllabic sounds, which attain very quickly their greatest loudness in each case after beginning with two or three softer initial sounds.

The measurements that are spread over the day show a diurnal fluctuation that, however, will not be treated in detail.

Species

The goslings of the individual species show very great differences in loudness; most penetrating are the calls of A. indicus, the softest are those of A. caerulescens. During development the contact sounds of A. caerulescens increase most strongly in intensity, those of A. canadensis increase least; in contrast, the last-named show the greatest increase in intensity of the weeping sound, A. albifrons shows here the smallest increase.
Correlation with anatomical findings

The intensity is dependent on the pressure in the *saccus claviculare*, on the damping and on the amount of opening of the laryngeal slit and of the bill. The sounds become more intense with increasing pressure, decreasing damping and increasing amount of opening of the larynx or bill. The open bill acts like a sounding horn. Since the individual factors affect the intensity in different degrees and since they can also interfere with one another, it is not possible to correlate the steps in intensity unambiguously with one or the other anatomical finding.

Table 6*. The values in the first column relate to three-day-old goslings, the values in the second column refer to the time of the third maximum in each species.

<table>
<thead>
<tr>
<th>Frequency in s. clavigularis</th>
<th>Damping of</th>
<th>Size of bill opening in</th>
<th>Intensity of all multiple sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>mono-syllabic</td>
<td>syllabic</td>
<td>sounds</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

* This table is an attempt at correlation: the highest values in each case, that is, amount of damping, size of bill, height of frequency, are designated by 1, the sequence in the species then runs from 1 to 4. In the parallel row is given the correlation of the character in each case with the intensity. The values for the relative relation of the volume of the saccus are based on estimates, the sequence of the amount of damping is based on the relation between greatest and smallest inner diameter of the tracheae.

The intensity is, like the frequency, positively correlated with the pressure in the *s. clavigularis*, therefore, frequency and intensity also should be correlated positively. This, however, does not always
apply. The sound types of a species, when arranged according to height of frequency have a different sequence than when they are arranged according to intensity (see Table 6).

5.2.3. Timbre, overtones

Sound types

The number of overtones increases in all species from the contact sounds to weeping; it strongly fluctuates for the trilling sounds. During development the number of overtones decreases in the multisyllabic sounds, it increases again only after attainment of the third maximum, when the sounds drop to the pitch of the adult animals. At a greater age fundamental tones and overtones are no longer sharply separated from one another, the number of overtones then increases again in all sound types.

Species

A. albifrons shows the most overtones for all sound types, *cneoruleae* shows the fewest overtones. This applies to the entire development.

Correlation with anatomical findings

Like damping, the overtones also depend on the inner diameter of the trachea, that is, in the following manner: the fundamental tone and the deeper overtones do not respond to a very narrow trachea, the high overtones drop out for a wide trachea.

Timbre

The timbre depends on, among other things, the overtones. A sound with many overtones is heard as sharp by man, one with few
overtone or dull; whether the geese have the same sound perception, I cannot say. According to Schwarzkopff (1955), the highest sensitivity of the ear in the goose lies at 2800 Hz, i.e. at about 1000 Hz; this difference in sensitivity is probably connected also with a difference in the sensation of timbre.

5.2.4. Duration of the syllables

- Sound types

The length of the syllables and of the pauses within a sound is characteristic for the sound types (Fig. 24).

- Trilling sounds: the trilling sounds are multisyllabic, without intervals between the syllables. The length of the syllables is the shortest, compared with the length of the syllables of other sound types. It remains constant for the entire course of development. The duration of the trilling sounds is thus linearly dependent on the number of syllables (Fig. 25).
Contact sounds: these sounds show characteristic differences in regard to length of syllables and of pauses in the individuals with simultaneous constancy of species. Within a species the pause becomes shorter when the duration of the syllables becomes longer, so that the contact sounds with equal number of syllables have about the same length in time. The contact sounds with different syllabic length of the same individual are lying approximately on a straight line; for the individuals of the same species we obtain families of straight lines that are shifted parallel to one another. The angle of the straight line with the horizontal is species constant (Fig. 25). The syllabic length fluctuates during the course of development about a mean, without the possibility of correlating these fluctuations with one of the other factors.

![Graph](image_url)

Fig. 25. Relationship between the number of syllables per contact sound and trilling and the duration of the sounds in all species.

The points on the curves are mean values of the different individuals.

Greeting: in the greeting sound the individual syllables are longer than in the contact sounds, the pauses are of about the same length, so that the contact sounds and the greeting sounds with the same
number of syllables show distinct differences in duration. The greeting sounds are always longer than the contact sounds; an exception is *A. albifrons*. The syllabic length of the greeting sounds increases with increasing age, so that there is no linear relation for greeting sounds as it exists for contact sounds.

Monosyllabic sounds; lamenting and weeping are monosyllabic sounds; the syllables of the weeping sounds are the longest, those of the lamenting sounds the second longest. The syllabic length of the lamenting sounds remains constant during development; the syllables of the weeping sounds show a splitting-up of their length into three series at the time of the breaking of the voice: the first drops to the length of the lamenting sounds, the second rises mostly by twice the amount to the length of the distance calls, the third lies intermediary between the first and second series (Fig. 24).

Species

The lengths of the trilling series lie very closely together, they differ by only a few one-hundredths of a second; I did not find either an inter-specific nor an intra-specific differentiation.

It is different in regard to the contact sounds and those of greeting: *A. albifrons* has on average the shortest syllables and the shortest pauses, followed by *indicus*, *B. canadensis* and finally *A. caeruleus*.

For the weeping sounds the intra-specific as well as the inter-specific variation is most strongly pronounced; however, the species are in a different sequence than in regard to the contact sounds. In weeping, *A. indicus* has the shortest syllables, *albifrons* is in second place, followed
by caeruleus and B. canadensis.

Correlations with anatomical findings

The sequence of the species in regard to the syllables of the contact sounds and greeting sounds appears to be positively correlated with damping. The syllabic length of the weeping sounds, in contrast, cannot be correlated with damping; I presume that still other factors, as the size of the diverse air sacs and with this the amount of air, play a decisive role in the duration of the syllables.

5.2.5. Number of syllables per sound

Of interest for this consideration are only the multisyllabic sounds, with one exception: B. canadensis can utter lamenting sounds of two or three syllables.

Sound types

The contact sounds consist in all species on an average of two to four syllables per sound. The trilling sounds can consist each of four to twelve syllables. The number of syllables of the greeting sound vary between two and fourteen. The sequence of the various contact sounds or of the greeting sounds is often characteristic for a certain individual. Some individuals keep "their" number of syllables constant during development, others may increase the number in part to double the initial one.

Species

The range of variation in the single individuals is so large that species characteristics can be found only in greeting sounds. Those
of *A. albitrons* can be composed of eight to thirteen syllables, those of *B. canadensis* of four to five syllables, those of *A. indicus* vary between two and seven syllables.

Table 7 below is intended to give a review of the multitude of combinations.

Table 7. Sequence of greeting sounds. Plotted are those sounds that occur most frequently at the point in question in the sequence, that is, the number of syllables, thus greeting sounds of one, three and two syllables. The deviations amount on an average to 16.5 per cent. Roman numerals indicate the different animals, arabic numerals the number of syllables per greeting sound.

<table>
<thead>
<tr>
<th>Anser indicus</th>
<th>Anser albiitrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser cyanescens</th>
<th>Branta canadensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

5.2.6. Frequency of the sounds

Definition of the concept frequency

The concept frequency will be used for the two following conditions: 1. relative frequency, it denotes the frequency of occurrence of the individual sound types during the day, without considering the number of sounds per unit time, that is, the velocity of the sound sequence. 2. Absolute frequency, it gives the number of sounds per unit time.
(100 sec have been selected), without consideration of the frequency of its occurrence.

The relative as well as the absolute frequency of the individual sound types within 24 hours, as well as within the time of development depend on: the conditions of rearing, state of health, rank in the flock of siblings, "temperament" of the goaling and above all, on the situations. The last-named will be considered again later.

Sound types

Relative frequency: the contact sound is the most frequent, followed by lamenting, greeting, trilling and weeping. Warning and hissing constitute the tail end and will not be considered here, because goolings that grow up in a normal family do not utter them until after they have become capable of flight. The scale is the same for all species and it changes only near the end of the first period of growth, when, for example, new sound types appear, as the distance call.

Absolute frequency: the absolute frequency of all sound types increases from the first utterance of sound in the egg until the time of the first maximum of the frequency curve, that is, during the first few days the goaling utters sounds almost continuously as long as it is awake. Until the time of the breaking of the voice the values decrease slowly, then faster until the end of the molting of the natal down.

An animal that is separated from its family at an age of about nine to ten months becomes mute to a large extent.

At the head of the absolute frequencies stand the weeping sounds, they are followed by the sounds of lamenting and then come greeting and contact sounds and finally the trills (Fig. 26).
Fig. 26. *A. indicus*. Absolute frequency of the weeping sound and of the contact sounds in 100 sec each. The points of the curves correspond to ten means each.

Species

The fastest sequence of the weeping sounds is found in *A. caerulescens*, after which follow *indicus* and *B. canadensis* and finally *A. albifrons*. For contact sounds and greeting sounds the sequence is *A. indicus*, *B. canadensis*, *A. caerulescens* and *albifrons*. The sequence of the contact sounds and those of greeting depends on the number of syllables per sound and the length of syllables and pauses.

5.2.7. Breaking of the voice

"When they (the young geese) grow feathers, the peeping tones change to others, which often change suddenly, are hoarse and gradually become more similar to those of the old geese" (Naumann, Vol. 11, p. 248).

The breaking of the voice occurs in both sexes. It can be recognized very
distinctly in the weeping sound; the least intense sounds do not give any indications of it. It appears to be independent, at least as far as the point in time is concerned, from the differentiation of the voice in the species that show dimorphism of the voice, which change occurs very much later. It appears simultaneously with the first sexually oriented behaviour patterns. The assumption suggests itself that the breaking of the voice depends on a very decisive relation in the growth of the membrane, of the trachea and of the volume of the saccus clavicularis, since the breaking of the voice appears in all species at the time of the third maximum. It is intended to clarify through castration experiments how far it depends on sex hormones. The period during which the breaking of the voice took place in the animals has been of greatly differing length. As is shown by the regression into the breaking of the voice that could be observed in two animals that were four and five months old respectively, the general condition of the animal also appears to play a role.

5.5. Correlation of the sounds with breathing, defecation and nervous movements

5.3.1. Breathing

No matter to which species they belong, geelings breathe slowest when uttering trilling sounds and fastest during weeping. This relative relation persists during development, the absolute number of breaths becomes smaller in all sound types, that is, the individual breath becomes longer with increasing weight of the animal.
Table 8. The values listed are the means for three-day-old goslings each. The value for the trill refers to the uncorrelated trill (see also p. 52).

<table>
<thead>
<tr>
<th>Species</th>
<th>Breathe/min</th>
<th>Species</th>
<th>Breathe/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus Weeping</td>
<td>160</td>
<td>Anser indicus Lamenting</td>
<td><110</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>175</td>
<td>Anser caerulescens</td>
<td><185</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>145</td>
<td>Anser albifrons</td>
<td><90</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>150</td>
<td>Branta canadensis</td>
<td><100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Grühen Greeting</th>
<th>Species</th>
<th>Stimmführungslaute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>95</td>
<td>Anser indicus Contact sounds</td>
<td>60</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>80</td>
<td>Anser caerulescens</td>
<td>55</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>70</td>
<td>Anser albifrons</td>
<td>80</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>80</td>
<td>Branta canadensis</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Trilling</th>
<th>Species</th>
<th>Schlafen Sleeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>30</td>
<td>Anser indicus</td>
<td>25</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>30</td>
<td>Anser caerulescens</td>
<td>25</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>30</td>
<td>Anser albifrons</td>
<td>20</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>25</td>
<td>Branta canadensis</td>
<td>20</td>
</tr>
</tbody>
</table>

5.3.2. Defecation

The rate of defecation can also be correlated with the sound types: in all species the highest rate is found during weeping, then lamenting and departing sounds follow, contact sounds, greeting and finally trilling. *A. indicus* has the highest rate of defecation during weeping, followed by *caerulescens*, *albifrons* and finally *B. canadensis*.

Table 9. The values relate to three-day-old goslings.

<table>
<thead>
<tr>
<th>Weeping sounds</th>
<th>Species</th>
<th>Defecations/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>25 - 35</td>
<td></td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trilling</th>
<th>Species</th>
<th>Defecations/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3. Nervous movements

The sound types can be correlated with the nervous movements (measured in cm/sec distance travelled): the strongest nervous movements can be observed when uttering the weeping sound, they decrease during
lamenting, contact sounds; during the trilling sounds they equal zero.

The sound types of greeting and departing can be included in this scheme only with qualifications, because during the uttering of these sounds, the nervous movements are represented either by simultaneous strong movements of the neck, as in greeting, or the departing and taking-wing sounds are accompanied in addition by a characteristic sequence of head-shaking and wing-lifting movements.

The greatest nervous movements are shown by *A. indicus*, followed by *caeruleascens*, *albifrons* and finally by *B. canadensis*. During the course of development the distance that can be covered is becoming greater.

5.4. Correlation of the sounds with characteristic movements

Under characteristic movements are here understood especially movements of the head and neck; movements of wings and tail could not always be correlated unambiguously with sounds. I have restricted myself therefore to movements of head and neck. In each case, the attitudes about which the movements can oscillate, are represented in Fig. 27.

Sound types

Trilling sounds: one part of the trilling sounds, differentiated from other trills only by higher intensity, is coupled with certain movements only during the first weeks (in *A. caeruleascens* and *albifrons* for two weeks, in *indicus* and *B. canadensis* for three weeks). The trilling gosling pushes its head and neck with a boring movement between wing and body of the mother and succeeds mostly after several attempts to get under the wing of the mother. This boring head-neck-movement with trilling
is also shown towards humans and other substitute objects. The percentage proportion of the trills coupled with the movement decreases, the percentage proportion of non-coupled trills increases until the former chare becomes so rare that it can no longer be recognized. The combination of the sound with this kind of movement ceases when the gosling has developed its ventral feathering.

Contact sounds and **lamenting** are not coupled with definite characteristic movements.

Greeting, weeping, warning, hissing are positively correlated
with the attitudes shown in Fig. 27, that is, about 90 per cent of the round utterances are being voiced in these attitudes.

The typical attitude during greeting is that in which the neck is stretched out forward in the longitudinal axis of the body. In accordance with the height of the face of the "greeted" partner, the neck can be held steeper or flatter. In addition, the neck is moved up and down in time with the rhythm of the sound utterances and the breathing. Deviations from this attitude appear normally near the end of greeting, when the greeting sounds change into contact sounds. In addition, while "greeting" one higher in rank in a flock of siblings, the one lower in rank can characteristically bend its neck far to one side of the longitudinal axis of the body away from the one being "greeted" (this has been observed only among goslings that had been hand reared).

The weeping sounds are uttered with the neck stretched upwards; as a rule the gosling also runs about with wings spread out. The correlation raised neck + weeping sound is so rigid that a gosling that has escaped by crawling under a fence, does not find its way back, even if the opening is large enough, if it should have to lower its head to pass through.

Greeting and weeping are coupled with the characteristic attitude already very shortly (four to five hours) after hatching. The attitude during greeting is preserved during the entire period of development and changes, as has been shown by Fischer (1965), into the attitude of adult gese during the triumphal calls. The coupling of weeping with lifting of the head becomes looser when the goslings come into the range of the third maximum of the frequency curve, when the weeping sound begins to split up. The attitude described is shown only during the distance
calls, during periods of lamenting sounds within the weeping the neck is lowered.

The characteristic attitudes during warning as well as during hissing could be observed only beginning with the third or fourth week of life. The attitude during warning was preserved also in the adult animals; the attitude during hissing depends on the object that is being hissed at.

5.5. Correlation of sounds with activities

The sound types can be correlated not only with characteristic movements but also with activities. The normal activities of a young goose, eating, drinking, bathing, preening, sleeping, as well as changes of place, show during their course certain relations to the sounds uttered during the activity. As examples are given here the records Figs. 28 and 29.

Movement from one place to another is correlated in general with contact sounds of few syllables or lamenting. The beginning of one of the activities cited above, with the exception of bathing or sleeping, is accompanied by an outburst of contact sounds. In each case, after the sub-riding of the readiness to act (which can be measured by the number of movement units per time, Heiligenberg) trilling sounds begin to appear, which are the only ones that are still being uttered at the end of the activity. When a new readiness to act comes into being, lamenting sounds or contact sounds with few syllables appear first and the sequence begins anew.

When this sequence is interrupted by disturbances that do not cause alarm, the goose will react to this disturbance with contact sounds, whereas it would have been trilling without the disturbance. If the goose
Fig. 26a. *A. indicus*, ten-days-old; section of a record of June 2, 1965. Activities and sounds uttered during the activities were recorded simultaneously with a polygraph.
happens to be in the phase in which contact sounds would preferably have been uttered, it reacts to the disturbance with lamenting sounds.

![Graph showing sound types over time]

<table>
<thead>
<tr>
<th>Sound type</th>
<th>ZEIT</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact sounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamenting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trilling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 26b. Frequency of the sound types at intervals of 15 sec according to the record of June 2, 1965.

An animal with "normal" readiness to bathe will utter contact sounds on reaching the water and then commence diving or bathing movements, whereas it is quite possible that contact sounds may be uttered under water. An animal with a high degree of readiness to bathe, which begins to make bathing movements already on the dry land, is going to start trilling on reaching the water. The same applies to a gosling that is very thirsty. An animal frequently rests after the readiness to act has subsided. It then lies down while trilling. Disturbances are answered with contact sounds; when a sleeping gosling is awakened, it answers with trilling.

The relationship between activities and the accompanying sounds that has been described above is valid for the "normal" case, when the parents or parent objects do not move away from the gosling. The distribution of lamenting, contact sounds and trilling is the same in all species, it is retained during the entire period of development and is found also in adult animals.

However, there is a difference in the number of sounds that
the individual may utter during the different activities. There are "taciturn" animals and also those that are especially "talkative". [p. 290]

Fig. 29a. *A. indicus*, 48-day-old, section of a record of Aug. 4, 1966. Activities and sounds of gosling and presence or absence of the parents were recorded simultaneously with a polygraph.

Fig. 29b. Frequency of the sound types at intervals of 15 sec, counted on the record of June 2, 1965, Fig. 29a [sic].

5.6. Correlation of sounds with situations

In the last section a few sounds did not appear, namely those that require an external stimulus for their release, these are at the same time the sounds that are correlated with an attitude: greeting,
weeping, warning, hissing.

Weeping and greeting must be considered to be antagonisms: a deserted gosling runs around weeping in the attitude already described, until it recovers contact with its parents and siblings. As soon as it sees its parents, it greets them intensively. It is possible to have both sound reactions repeated almost as often as desired.

Signs of fatigue in the sound reaction of a deserted gosling appear only after a period of hours; in the field the result is generally the death of the gosling affected. Hand-reared goslings who, for example, after being left alone at night, weep almost continuously during the first nights, then the reaction subsides. Greeting is fatigued more easily. A gosling, which, for example, loses sight repeatedly of parents and siblings in a pasture, will, it is true, greet at the first reunion, afterward it will react only with contact sounds (see also records, Figs. 28, 29). In hand-reared goslings, the position in rank in addition plays a role: a gosling lower in rank will still greet one higher in rank, whereas the one higher in rank will answer with contact sounds.

Goslings who grow up as members of a family utter warning sounds spontaneously only when they are almost able to fly (at least under the conditions at Seewiesen). The goslings that had been hand-reared by me were warning already on the first day, that is, of flying objects. Later they warned also under suddenly occurring stimulations, when I was staying with the flock in strange surroundings.

I observed hissing in goslings that had been raised in a family only at a very late date, shortly before they became capable of flight. The hissing of hand-reared goslings was directed to objects, as the microphone, when they were seen for the first time. The goslings hissed at
unknown living animals, as dogs, cats, hedgehogs, snakes, only after they had had bad experiences with such objects. Inexperienced, very young goslings (up to five days old) greeted the objects, older goslings tried to eat them, bite them, or they ignored them entirely.

![Graphs of Anser indicus and Anser albifrons](image)

Anser indicus

Anser albifrons

![Graphs of Anser coerulescens and Branta canadensis](image)

Anser coerulescens

Branta canadensis

Age in days

indicated is in each case the maximum distance, the minimum distance can drop to body contact.

Fig. 30. Correlation of the sounds with the distance between goslings and parents. With increasing age the distances between goslings and parents also increase, within which they sound the sounds of trilling, contact etc. The lines limiting the sound types indicate the maximum distance within which the sound in question is uttered.

Weeping, later distance call
Lamenting
Contact Sounds
Trilling
Apart from changes in position that are initiated by the gosling, they are lamenting also in the following situations: during the splitting of the egg shell the goslings utter lamenting sounds that are followed by contact sounds or trilling, when the piece of egg shell has been loosened. A gosling with a foot injury that is lying down begins to lament about one minute before it makes visible attempts to stand up. A low ranking gosling, which is being bitten often, may lament when it sees its attacker threaten. Inexperienced geese, who land in their first winter on thin ice and break through, can lament for up to 20 min before they decide to take wing.

The situations that are accompanied by contact sounds and trilling have already appeared in the chapter on the correlation of activities and sounds.

5.7. Correlation of the sounds with the distance between goslings and parents

The following relations exist between the utterances of sound by goslings and their spatial distance from the parents (or the parent substitute), which are dependent on the visibility of the parents: with increasing distance from the parents, the frequency of the sounds uttered shifts from trilling through greeting, contact sounds to lamenting. Beyond the limit of visibility only the sound of weeping or later the distance call will be uttered (Fig. 30).
6. FUNCTION OF THE VOCALIZATIONS

6.1. Reactions to sounds

It is not possible to establish for all sound types unambiguous reactions to sounds by the goslings as well as by the parents.

6.1.1. Reactions of the parents to the sounds of goslings

Trilling sound: a leading experienced goose reacts to the trilling sound that is coupled with the boring head-neck movement by moving its head towards the gosling and slightly lifting its wing. This reaction of the mother can be observed during the brooding period. Since this trilling is differentiated only by its greater intensity from the trilling during the subsiding of the readiness for acting, to which no reaction can be recognized, the greater intensity must be considered to be its only distinguishing characteristic. The goose reacts even already to the sound before the gosling reaches or touches it, or before it sees the gosling. An inexperienced goose that has incubated for the first time will, it is true, also move the head towards the gosling, but very often it will rise and move away from the gosling.

Contact sounds: contact sounds of the gosling can be answered by the leading parents, but they must not necessarily be answered by them. They are non-specifically "friendly" in their effect.

Greeting: greeting goslings are in turn greeted regularly by the parents. In young *A. indicus* that were older than about three weeks, I observed a behaviour connected with greeting that was reminiscent of non-ritualized "agitating". When a gosling feels threatened, it alternately
turns, intensively greeting, to the parents and threatening towards the enemy. This behaviour induces the parents to attack promptly, at which they are supported by the goslings. This behaviour could not be observed in the other species.

Lamenting: a specific reaction to lamenting sounds could be observed only when they were produced in the departing rhythm. A. canadensis goslings, the lamenting sounds of which can turn into weeping in this situation, will, if they want to go to some other place, move with lamenting sounds away from the parents to the desired place, the parents then react by following the goslings. In this situation the goslings of the other species utter contact sounds in the departing rhythm that can change into lamenting; here also the parents follow.

Weeping: to the weeping sounds of the deserted goslings, one of the parents, mostly the gander, reacts with searching behaviour, meeting movements, eventually with attack of neighbouring, uninvolved geese. The parents recognize the weeping sounds of their own goslings; as experiments showed, they react only to the acoustic stimulus. A missing gosling that remains mute is not being missed. Which parameters of the weeping sound are responsible for recognition is still to be investigated.

Warning sound: the parents do not react to the warning sounds of the goslings.

Distress call: the distress call of a gosling has a dramatic effect on the parents. They run or fly to the gosling and stand alongside of it hissing and with ruffled feathers. All geese in the vicinity "mob" (oral communication by Lorenz).
6.1.2. Reactions of the goslings to sounds of the parents

Only those sounds will be described to which the goslings react unambiguously.

Departing sound: the reaction of following on the part of the gosling to the leading (departing) sound of the goose is unambiguous. During the first six days the gosling follows also other geese than the parents, when the former move away while uttering the departing sound.

Greeting: the goslings regularly join the triumphal calls of the parents with greeting.

Warning: the reaction of the goslings to the warning sounds is also unambiguous: on land they run to the mother and even hide underneath her; on the water they swim to the mother or dive. Adaptation to the warning sound of the parents has not been observed among goslings that had been reared as a family. In hand-reared goslings adaptation can be brought about when the warning call has been used "unnaturally" frequently by the foster parents.

As has been demonstrated in quail eggs by Vince, embryos react already in the egg to sounds of the mother. The eggs that I kept in the incubator showed during the last days before hatching a distinct increase in the rate of pecking against the egg shell when the eggs had had sound contact with me or with other eggs. Goslings of the same clutch that remained without sound contact hatched up to 36 hours later.

6.1.3. Reactions of the goslings to sounds of the siblings

The goslings react to the sounds of siblings already in the still closed egg. Tape recordings show that the lamenting from an egg
that had become cold was answered with trilling by one that was kept warm. The discourse "I am warm" - "I am cold" was continued for 10 min until the cold egg was warmed, after which a short while later only trilling sounds were heard.

"Vocal exchanges" between siblings took place very frequently, without the sounds or answers triggering visible reactions. Goslings growing up alone or in a small flock of siblings utter fewer sounds than a large flock, not only absolutely, but also as a percentage. With the exception of warning, the sounds of a gosling (also those played from a tape recording) appear to act stimulating on the sound production of siblings.

Weeping goslings synchronize with one another so that it is impossible to separate the sounds of individual goslings either by ear or in the spectrogram.

6.1.4. Reactions of the goslings to sounds of their own species

With the exception of the warning sounds, no attention is paid by goslings to sounds of other geese of their own species as soon as they know the voices of their parents or foster parents. Learning to recognize the voices of the parents can require different periods of time in the individual species. Ailing goslings can require up to four weeks.

6.1.5. Reactions of the goslings to the sounds of other species

The homologous sounds of the goslings of other species will be answered in the same way as those of siblings of their own species about one or two days after they have been intermingled. It has been planned
to investigate the reactions of goslings to the sounds of adult geese of other species.

6.2. Function of the sounds

The analyses of situations and reactions have shown that young geese have at their disposal sounds that establish a direct social contact (greeting, weeping, warning, partly trilling) or that these sounds act on the members of their social surroundings through induction, the "transfer of moods" (trilling, contact sounds, lamenting, hissing). All sounds, except weeping, are uttered by the goslings only when they can see their parents and a gosling that has lost sight of its parents attempts to find them again as quickly as possible with the aid of weeping.

In combination with the reactions and sounds of the parents, the sounds of the goslings act as a tie that keeps the family together and that synchronizes the activities of its members. One might consider that the function of the sounds of the goslings consists in securing the social contacts and the protection of the goslings.

7. DISCUSSION

7.1. Comparison of the sounds of normally reared goslings and of those reared in isolation

Geese reared in different ways did not show qualitative differences in the physical parameters of their sounds, however, there were quantitative differences.

Kaspar-Hauser animals as well as those raised in isolation with ducks uttered fewer sounds. In the Kaspar-Hauser animals the relative
frequency shifted in favour of the lamenting sound and its mixed forms. The sounds relating to a social partner, as greeting, were addressed to the substitute that had at least one of the qualities of the mother, namely, the heating lamp. Geese reared with ducks addressed the greeting to their companions, occasionally also to the heating lamp.

7.2. On the homology of the sound types

In the introduction the hypothesis had been proposed that the sound types with the same name of the four species are homologous with one another. There exists a series of criteria that allows to test the homology. They have been tested by Remane (1956) through morphological and anatomical investigations in regard to their methodical usefulness. That they can be applied to characteristics of behaviour has been demonstrated by Wickler. According to Wickler (1967, p. 426) these criteria are:

"(a) the criterion of special quality

Characteristics of behaviour are homologous the more certainly the greater the number of special characteristics in which they agree and the more complicated are the special characteristics and the greater the agreements are.... One takes into account the visible and audible form of the event, further a multitude of auxiliary special features, as dependence on an identical external situation, woods, similar meanings etc.

(b) the criterion of the position in the structure of the system

In behaviour there is available to begin with only the positional relation within one dimension, that of time, in relation to the preceding and subsequent behaviour. One takes into account, however, also the position of behaviour in relation to a succession of reactions of the partner
or in the case of utterances of sounds to the rhythm and the relative position of the individual elements in relation to a fundamental tone..."

7.2.1. Criterion of the special quality

It is not intended any longer to discuss individually in this section all sound types. Only trilling and weeping will be compared. The shape of the course, that is, the rise and fall of the frequency in the individual syllables and the sequence of the syllables make it possible to recognize a distinct similarity among the trilling sounds. The same applies to the shape of the course of the weeping sound and, as Figs. 3 and 7 show, this character can be used for an effective delimitation of the group of trills from that of the weeping sounds.

When one summarizes all values that have so far been given for the individual sound types, one can say that in all species the weeping sounds are characterized by the longest duration of the syllables, by the highest intensity, the most vigorous breathing etc. Relations of a similar relative order are found also for the other sound types.

The coupling of certain neck movements at this age are the same for corresponding sound types; it is true, the characteristic attitude during greeting - the neck stretched far ahead - is not shown by the adults of all species during the triumphal calls. (A. caeruleogilvus has a different attitude: the pairs stand during the intensive triumphal cries almost breast to breast, without holding the neck in the manner typical for indicus or albidifrons stretched out and either parallel or crossed.) In the same way, the boring head-neck movement that is coupled with trilling is present in all species, but its duration can differ.
7.3.2. Criterion of the position of the structure of the system

This criterion cannot be applied with uniform unambiguosness to all sound types: for lamenting, contact sounds and trilling one can refer to the ideal sequence of sounds during the course of preparedness for action that is the same for all species; for weeping and greeting one can consider the reaction of the goslings to the parents.

On the basis of this result one may assume that the conjecture that the sound types are homologous is very probably correct. At the same time the division into types has also been justified.

The proof for homology could be applied according to the same mode also to the other species of anatids; this might make it possible to arrive at conclusions about the phylogeny of the sounds in this group.

7.3. Transitions between sound types

Until now we have been speaking about sound types as if they were ideal types. However, there exist definite transitions.

Multisyllabic sounds:

Contact sounds can pass fluently into trills (Fig. 31a). The proportion of contact sounds in trilling can be reduced down to one syllable; the syllable of the contact sound, which then always stands at the beginning, acts as a kind of grace-note and can become clearly characteristic for an individual. During the first ten days of life in all species, transitional forms between contact calls and trilling sounds amount to between 17 and 22 per cent of the trills uttered. Later they become rare.
Transitions from the contact sound to trilling, for other explanations see Fig. 3.

Transitions from trilling to contact sounds or to other sound types have not been found.

Contact sounds and greeting can change easily from one to the other; thus, contact sounds occur very regularly towards the end of a period of greeting sounds; vice versa, contact sounds can change into greeting, all intermediate steps of the physical parameters can be found.

Monosyllabic sounds:

Monosyllabic contact sounds can change fluently into lamenting, but I have never heard the reverse process (Fig. 31b). Transitions of this kind can be heard above all in the group that has been called departing sounds by Heinroth (1924). The departing sounds are distinguished from all other sounds by the fact that they do not belong to a definable sound type, but represent special manifestations of two sound types.

Contact sounds as well as lamenting sounds can appear as departing sounds, in that case they are characterized by a striking rhythm and higher intensity. Which type of sound will be uttered depends on the
possibility that the gosling actually can move away. The less opportunity
to change its place a gosling has, the more quickly the contact-departing
sounds will change to the lamenting-departing sounds, when the gosling
wants to change its place.

Fig. 31b. Transition from the contact sound in departing
rhythm to lamenting sounds in departing rhythm in A.
caerulescens, 150-day-old. Upper: contact sound;
centre: transition; lower: lamenting sound.

A distinctly recognizable rhythm is present in A. indicus (180
sounds per min) and in caerulescens (up to 240 sounds per min) already
beginning with the third day of life; in the other species I have heard
a typical rhythm only when they became able to fly.

Transitions between lamenting and weeping can be found in each
case at the beginning of a period of weeping sounds; at the time of the
third maximum such transitions can be heard also during the period of
weeping sounds. At this time there appear also transitions between
weeping sounds and distance calls. Both these intermediate forms disappear in the normal gosling as soon as the distance calls have become fully developed. The adult geese are able to make lamenting-distance calls.

![Lamenting sounds in departing rhythm](image)

Fig. 52. Lamenting sounds in departing rhythm. Upper: A. indicus, three-day-old; lower: caerulescens, three-day-old.

No transition to warning and hissing could be established.

Neither were there any transitions from trilling to lamenting or weeping; likewise, there were none from contact sounds or greeting to weeping.

7.4. Sound series

Inspection of all the characteristics of sound types suggests the surmise that the sounds are expressions of the state of excitement of an animal: strong increase in breathing and the surprisingly high rate of defecation support the conclusion that the weeping sound is an expression of great excitement; the decrease of these values in the sequence lamenting - contact sounds - trilling, during the course of an activity
points to the fact that the sounds indicate the degree of satisfaction of the requirement in each case. Of course, the sounds should not be taken here as an absolute measure of the excitement. They only show the relative shift of the degree of excitement in each case and in this manner: when the excitement of a goose decreases from a given status of excitement, then sounds appear that have an increasing number of syllables, sinking intensity and decreasing length of syllables; when the excitement increases, there appear monosyllabic sounds of increasing intensity and increasing duration of the syllables. This coupling appears regularly!

The sounds, which are not coupled with certain movements, activities, nor even situations (trills, contact sounds, lamenting), can always be "superposed" by sounds that are bound to characteristic movements and unambiguously defined external stimuli (when the corresponding stimulus is offered. Greeting, weeping). This emphasizes the eminent importance of the last-named group of sound types.

One could therefore delimit the two groups from each other in this manner:

1. Lamenting, contact sounds and trills (non-coupled) are indications of a relative shift of the degree of excitement and the expression of the phase of an action, independent of the motivation that is the basis of the action (after Tinbergen 1966) or of the urge (after Heiligenberg 1963).

2. Weeping and greeting might be considered as antagonisms of the bond drive (after Fischer 1965); they are dependent on a certain motivation, that is, just on the bond drive.
Summary

Production, development and function of the vocalisation of four goose species
(Alopica indica, A. caerulescens, A. albifrons and Branta canadensis)

1. The mechanisms of sound production, the ontogeny of calls in relation to
 the development of anatomical structure, and the correlation between
 calls and actions or situations were investigated.

2. Investigation of live birds and blowing experiments (Anblasversuche fol-
 lowing Rüppell, 1933) with dead birds confirmed the hypothesis that
 the pressure in the sacculus claviculae, and not the tracheal musculature,
 causes the tension of the membranae tympaniformes necessary for sound
 production. Syringeal musculature often described for geese was not to be
 found.

3. Frequency and intensity of the calls have the following relationship to
 the anatomical structure: frequency seems to be negatively correlated to
 the size of the membranae tympaniformes, intensity is negatively corre-
 lated to the diameter of the trachea, both are positively correlated to the
 pressure in the sacculus claviculae. A few additional factors, such as size
 of the bill and width of the opening, have an influence on the intensity.

4. Even whilst the goose is still in the egg it is possible to hear trills, con-
 tact-calls and lament-calls. Shortly after hatching, as soon as the move-
 ments of the gosling are coordinated, those calls which are correlated
 with definite movements (e.g. greeting, trilling, distress-calls) are ob-
 served.

 The absolute values change, however: the frequency decreases in propor-
 tion to the growth of the trachea and the membranae tympaniformes; the
 intensity increases in proportion to the diameter of the trachea and the
 other factors mentioned. Measured according to their physical parameters,
 the positions of the various calls in relation to each other remain the same
 throughout the entire observation period.

 The voice begins to break when the first sexual behaviour patterns
 occur.

 Distress-calls are replaced by the less intensive and deeper lament-calls
 and by the distance-calls, which take over the social role of the distress-
 calls.

 Under conditions of low excitation the calls are soft and multisyllabic.
 As the bird becomes more excited, the calls become louder and have fewer
 syllables.

 Lament-calls (uttered with or without a particular rhythm), contact-calls
 and trills are, in that order, characteristic of the beginning of a beha-
 viour pattern, the pattern itself and the end (e.g. feeding, drinking,
 preening). These calls are independent of the type of the behaviour pat-
 tern and the drive that causes them.

 Greeting and distress-calls (triunph ceremony and distance-calls in the
 adults) depend on a definite drive, the "bond-drive" (Bindungstrieb of
 Fischer 1965).

5. The function of the calls is to further the gosling-parent bond and to
 synchronize actions within the family.

Translations of German titles

3 Natural History of Birds.

8 Remarks on the biology of geese.

11 The triumphal cries of the grey lag goose.

12 Introduction to Physics.

13 On the development of the young, the breeding biology and the comparative ethology of the limnicoles.

17 Causes for the appearance of instinctive movements in a fish (Pelmatochromis subocellulatus krubensic Boul.)

18 Contributions to the biology, mainly to the ethology and psychology of anatidae.

19 The birds of Central Europe.

26 In: Behaviour and vocalizations.

32 The companion in the environment of the bird.

35 Perception of form as source of scientific knowledge.

37 The development of the vocalizations and of some kinds of behaviour in the blackbird (Turdus merula).

45 Natural history of the birds of Germany.

55 The principle of the voice formation in vertebrates and man.
45 The foundations of the natural system of comparative anatomy and phylogenetics.

48 Physiology and acoustics of the bird voice.

49 The development of vocalization in the whitethroat (*Sylvia communis*).

50 Development and regression of innate behaviour in the whitethroat.

51 The historical development of the concepts "innate triggering scheme" and "innate triggering mechanism" in ethology.

52 An apparatus for tone frequency spectrography made of building units.

53 Acoustic sense organs, their function and biological importance in birds.

54 Comparative physiology of hearing and of vocalizations.

55 Auer; in: Kükenthal's Handbook of Zoology.

57 Research in Behaviour.

58 The evaluation of bird voices from tape recordings.

60 The Study of Instinct.

62 Physics.

64 Contributions to the mechanics of breathing in birds standing and flying.

Address of author: Dr. I. Würdinger, 18131 Seewiesen, Max Planck Institute for Behavioural Physiology.
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

(Anser indicus, A. caerulescens, A. albifrons und Branta canadensis)

Von Irene Würdinger

Mit 32 Abbildungen

Eingegangen am 2. 12. 1968

1.1. Einleitung

Danksagung

Herrn Prof. Dr. Dr. K. Lorenz sei für Anregungen zu dieser Arbeit, für sein unermüdliches Interesse und für stete Förderung gedankt. Herrn Prof. Dr. H. Auer für Anregung und Ratschläge, Herrn Dr. K. Kramer für geduldige Rat in physischen Fragen, Fräulein Dr. H. Fischer, Herrn Dr. H. Schöne und Herrn Dr. W. Wüthener für die kritische Durchsicht des Manuskriptes. Herrn H. Kacher danke ich für Beratung und Hilfe bei den Abbildungen, Fräulein I. von Wuthenau für die Anfertigung der Zeichnungen.

Der Deutschen Forschungsgemeinschaft danke ich für die mir zur Verfügung gestellten Geräte.

1) Die Arbeit wurde als Dissertation der Universität München angenommen.
Aus Gründen der Verständlichkeit einige sie charakterisierenden Eigenschaften, wie auch sonst üblich, mit der Anatomie

1.3. Material

Die Untersuchungen wurden an insgesamt 30 Küken durchgeführt, von denen jede Art jeweils 10 Exemplare umfaßte. Die Küken wurden in Gruppen von 10 Tieren aufgezogen, wobei die Gruppen zu Beginn der Untersuchungen gleichmäßig verteilt waren.

Tab. 1: Aufgliederung der untersuchten Tiere

<table>
<thead>
<tr>
<th>Art</th>
<th>durch die Eltern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>2</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>3</td>
</tr>
<tr>
<td>Anser abilis</td>
<td>2</td>
</tr>
<tr>
<td>Anser brachyrhynchus</td>
<td>-</td>
</tr>
<tr>
<td>Anser clypeatus</td>
<td>-</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>3</td>
</tr>
</tbody>
</table>

Anser brachyrhynchus und Anser clypeatus wurden nicht mit berücksichtigt, da die Anzahl der Kaspar-Hauser-Tiere stellte mit Dr. Fischarführung.

Die von ihnen erhaltenen Daten auf Futterkurven an meiner Person und die Aufbeobachtung möglich war.

Für die Handaufzucht bestimmten Zuchtgruppen setzten sich je nach Zahl und Art der untersuchten Alters- und verschiedener Art der Gänse maximalen eigene Handlungsreihen der jungen Gänse, bis diese flugfähig und etwa 5 Std. pro Tag beobachtet wurden.

Stimmtliche ist die Gans erst nach 6 bis 7 Lebensjahr, also mit etwa anderthalb Jahr nüchtern in ihrer Stimmentwicklung über all der für diese Arbeit ausgewiesene Zeitspanne. Innerhalb dieser Zeit ist die Jugendzeit und hat fertig genommen.

Die für die Artenvergleich, besonders aufgebrachte Lautäußerungen wurden III-Telefunkengerät (Bandgeschwindigkeit

KHz

1
2
3

Zeit pro Silbe

Abb. 2: Die KHz
Aus Gründen der Verständlichkeit sollen zunächst die Lautarten mit einigen charakterisierenden Eigenschaften vorgestellt werden, dann wird, wie auch sonst üblich, mit der Anatomie begonnen.

1.3. Material und Methode

Die Untersuchungen wurden an insgesamt 46 Tieren aus 6 Arten durchgeführt; diese Anzahl läßt sich nach Art der Aufzucht wie folgt gliedern:

<table>
<thead>
<tr>
<th>Arten</th>
<th>durch die Eltern</th>
<th>von Hand mit Ana plathyrrhyctos als Kasper Hauser 10</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Anser albirostris</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Anser brachyrhynchos</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Anser cygnoides</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Anser brachyrhynchos und Anser cygnoides wurden bei der Auswertung der Laute nicht berücksichtigt, da die Anzahl der untersuchten Tiere zu gering war. Von den Kasper-Hauser-Tieren stellte mir Dr. Fischer freundlicherweise die Tonbänder zur Verfügung.

Die von ihnen natürlichen Eltern auf dem Eßsee aufgezogenen Gänse wurden durch Futterdressur an meine Person und die Aufnahmeergerate gewöhnt, so daß eine störungsfreie Beobachtung möglich war.

Die für den Artenvergleich, besonders für die Betrachtung der physikalischen Parameter gebrauchten Lautäußerungen wurden unter konstanten Bedingungen mit einem Nagra III-Telefunkengerät (Bandgeschwindigkeit 9 und 19 cm/sec) aufgenommen. Das Mikrophon

Anschließend werden die Strukturen der Atemorgane mit physikalischen Daten auf bestimmte Artanmerkmale zugeordnet. Zur Beantwortung der Frage, ob die Lauterzeugung zuverlässig ist, wird die Funktion der Atemorgane und deren Einfluss auf die Lauterzeugung untersucht.

Abb. 2: Die Auswertung der Spektrogramme
Irene Würdinger

Alle folgenden Aussagen beziehen sich, wenn die einzelnen Arten nicht gesondert hervorgehoben sind, auf sämtliche Arten und die ganze Beobachtungszeit.

2. Einführung der Lauttypen

2.1. Definition des Begriffes Laut

Neben der physikalischen Definition möchte ich eine physiologische einführen: unter einem Laut sei die während eines Exspirationszuges hervorgebrachte stimmliche Äußerung verstanden.

Tembrock:
- Einsilbe
 - Warnen, Weinen, Jammern
 - Mehrsilbige: Stimmführungslauten, Gräßen (und Triller)

Mulligan:
- Note: a sound producing a continuous trace on the sound spectrograph
- Syllable: a simple or complex element, that is serially repeated
- Trill: a consecutive series of similar syllables

Marler:
- Notes: basic units, each of which is one continuous vocal utterance. A single note might be modulated in frequency or amplitude
- Syllables: notes, arranged in groups, to form more or less coherent units
- Trill: syllables, repeated consecutively two or more times.

2.2. Spektrogramme zur Einführung der Lauttypen

Die auf Abb. 3 bis 7 gezeigten Spektrogramme stellen für jede Art die Lauttypen eines 3 Tage alten Individuums dar. Auf der Ordinate aufgetragen ist die Frequenz in kHz, auf der Abszisse die Tiere. Die Abbildungen von Weinen, Weinen, Jammern, Weinen, Narren, Angstruhe, Zischen, Stöhnen, Niesen, Klicks etc. sind in der Abbildung dokumentiert.
ist die Frequenz in kHz, auf der Abszisse die Zeit in sec: Die in Tab. 2 angegebenen Daten beziehen sich nur auf die Grundtöne.

![Diagram](image)

Abb. 3: Weinen
Weinlaut. HEINROTH (1910); Pfeifen des Verlassenseins, LORENZ (1935); Weinen, FABRICIUS (1951); Distress-call, KEAR (1967).
Links oben: A. indicus; unten: A. caerulescens
Rechts oben: A. albifrons; unten: Branta canadensis
Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz, die Markierung beginnt bei 1 kHz
Abszisse: Der Abstand der Zeitmarken beträgt 0,5 sec.
Abb. 5: Stimmfühlungslaute (Linke Reihe)
Unterhaltungsauft, HEINROTH (1910); Stimmfühlungsauft, HEINROTH (1924); Calling-note, FABRICUS (1951); Contact-call, COLLIAS (1962); Wi-laut ohne Halsvorstrecken, FISCHER (1965); Pleasure-call, KEAR (1967). Von o. nach u.: Anser indicus, A. caerulescens, A. albiros, Branta canadensis.

Abb. 6: Grüßen (Mitte Reihe)
Grüßen, HEINROTH (1924); Greeting-call, COLLIAS (1962); Wi-laut mit Halsvorstrecken, FISCHER (1965). Von o. nach u.: Anser indicus, A. caerulescens, A. albiros, Branta canadensis.

Abb. 7: Trillern (Rechte Reihe)
Schlaflaut, HEINROTH (1910); Triller, FISCHER (1965); Sleepy-call, KEAR (1967). Von o. nach u.: Anser indicus, A. caerulescens, A. albiros, Branta canadensis.

Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz; die Markierung beginnt bei 1 kHz.
Abszisse: Der Abstand der Zeitmarken beträgt 0,5 sec.

Unter den Lauttypen ist der Warnlaut nicht mit aufgeführt, da er normalerweise erst von flugfähigen Gänsen geäußert wird; er läßt sich jedoch experimentell durch Raubvogelattrappen schon im Alter von 1 bis 2 Tagen auslösen (Abb. 8).

Die Auslösung des Angstschreies hatte die unerwünschte Wirkung, daß das Tier für geraume Zeit äußerst scheu gegenüber dem Menschen war und damit die Kontinuität der Beobachtungen und Aufnahmen gefährdet war. Er wurde deshalb nicht berücksichtigt.

Der einzige Instrumentallaut, den junge Gänse erzeugen, ist das Schlagen des Eizahns gegen die Schale.

Tab. 2

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1080 - 2300</td>
<td>2150</td>
<td>4</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>900 - 2250</td>
<td>2000</td>
<td>5</td>
</tr>
<tr>
<td>Anser albiros</td>
<td>1375 - 3380</td>
<td>3100</td>
<td>4</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>1225 - 2700</td>
<td>2175</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jammern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1150 - 2100</td>
<td>1780</td>
<td>4</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1190 - 2235</td>
<td>2050</td>
<td>4</td>
</tr>
<tr>
<td>Anser albiros</td>
<td>1200 - 2850</td>
<td>2400</td>
<td>4</td>
</tr>
<tr>
<td>Anser canadensis</td>
<td>1630 - 2225</td>
<td>1975</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimmfühlung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1000 - 1775</td>
<td>1500</td>
<td>4</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1125 - 1985</td>
<td>1615</td>
<td>4</td>
</tr>
<tr>
<td>Anser albiros</td>
<td>1315 - 2675</td>
<td>2150</td>
<td>4</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>975 - 2075</td>
<td>1790</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grüßen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1300 - 2200</td>
<td>1835</td>
<td>4</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>800 - 2100</td>
<td>1800</td>
<td>4</td>
</tr>
<tr>
<td>Anser albiros</td>
<td>1475 - 3283</td>
<td>3000</td>
<td>4</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>1050 - 2125</td>
<td>1825</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trillern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1375 - 2750</td>
<td>2200</td>
<td>4</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>990 - 1925</td>
<td>1650</td>
<td>4</td>
</tr>
<tr>
<td>Anser albiros</td>
<td>1430 - 2880</td>
<td>2650</td>
<td>4</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>900 - 1900</td>
<td>1650</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warnlaut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>1475 - 2850</td>
<td>2825</td>
<td>4</td>
</tr>
</tbody>
</table>

Abb. 8: Warnlaut
Ordinate: 1000 Hertz
Abszisse: L
<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1080 - 2300</td>
<td>2150</td>
<td>47 - 55</td>
<td>1</td>
<td>0,14</td>
<td>0,20</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>900 - 2250</td>
<td>2000</td>
<td>50 - 55</td>
<td>1</td>
<td>0,17</td>
<td>0,16</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1375 - 3380</td>
<td>3100</td>
<td>45 - 50</td>
<td>1</td>
<td>0,165</td>
<td>0,21</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>1225 - 2700</td>
<td>2125</td>
<td>40 - 50</td>
<td>2</td>
<td>0,25</td>
<td>0,23</td>
</tr>
</tbody>
</table>

Jammers

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1150 - 2100</td>
<td>1760</td>
<td>35 - 50</td>
<td>1</td>
<td>0,12</td>
<td>0,27</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1150 - 2235</td>
<td>2050</td>
<td>45 - 53</td>
<td>1</td>
<td>0,08</td>
<td>0,15</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1200 - 2850</td>
<td>2400</td>
<td>35 - 45</td>
<td>1</td>
<td>0,095</td>
<td>0,105</td>
</tr>
<tr>
<td>Anser canadensis</td>
<td>1630 - 2225</td>
<td>1975</td>
<td>30 - 45</td>
<td>1 - 3</td>
<td>0,18</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Stimmfaltungslaute

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1000 - 1775</td>
<td>1600</td>
<td>30 - 40</td>
<td>1 - 6</td>
<td>0,055</td>
<td>0,095</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>1125 - 1995</td>
<td>1615</td>
<td>35 - 45</td>
<td>1 - 4</td>
<td>0,11</td>
<td>0,06</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1375 - 2675</td>
<td>2150</td>
<td>30 - 40</td>
<td>1 - 5</td>
<td>0,06</td>
<td>0,035</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>975 - 2075</td>
<td>1750</td>
<td>25 - 35</td>
<td>1 - 4</td>
<td>0,07</td>
<td>0,095</td>
</tr>
</tbody>
</table>

Grätschen

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1300 - 2200</td>
<td>1835</td>
<td>35 - 45</td>
<td>2 - 6</td>
<td>0,08</td>
<td>0,055</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>800 - 2100</td>
<td>1800</td>
<td>35 - 50</td>
<td>1 - 4</td>
<td>0,12</td>
<td>0,08</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1475 - 3283</td>
<td>3000</td>
<td>35 - 45</td>
<td>2 - 10</td>
<td>0,085</td>
<td>-</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>1050 - 2125</td>
<td>1625</td>
<td>30 - 45</td>
<td>2 - 3</td>
<td>0,12</td>
<td>0,035</td>
</tr>
</tbody>
</table>

Triillen

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1275 - 2750</td>
<td>2200</td>
<td>25 - 35</td>
<td>3 - 7</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>950 - 1925</td>
<td>1650</td>
<td>30 - 40</td>
<td>3 - 6</td>
<td>0,07</td>
<td>-</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>1430 - 2880</td>
<td>2650</td>
<td>25 - 35</td>
<td>3 - 13</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>900 - 1900</td>
<td>1850</td>
<td>25 - 35</td>
<td>3 - 8</td>
<td>0,07</td>
<td>-</td>
</tr>
</tbody>
</table>

Warnlaut

<table>
<thead>
<tr>
<th>Art</th>
<th>Frequenzbereich Hz</th>
<th>Intensiv. Frequenz Hz</th>
<th>Intensität db</th>
<th>Anzahl Silbe/Laut</th>
<th>Zeit Silbe sec</th>
<th>Abstand d. Laut sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>1475 - 2850</td>
<td>2625</td>
<td>50 - 55</td>
<td>1</td>
<td>0,10</td>
<td>-</td>
</tr>
</tbody>
</table>

Abb. 8: Warnlaut von Anser indicus
Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz; die Markierung beginnt bei 1 kHz.
Abzisse: Der Abstand der Zeitmarken beträgt 0,5 sec.
3. Anatomie der Lauterzeugungssorgane

3.1. Einleitung

RUPPEL (1933) hat in einer Reihe von Anblasversuchen und Arbeiten an Modellen die grundsätzliche Wirkungsweise und Bedeutung des Saccus cl. und der Membranae tympaniformes aufgeklärt und die akustische Beziehung zwischen Trachea und Syrinx erarbeitet.

3.2. Beschreibung der Organe

Die Räume, Organe und Muskeln, die an der Lauterzeugung beteiligt sind, sind grundsätzlich für alle Arten gleich; sie sind in dem Augenblick funktionstüchtig, in dem der Schnabel des Gösels in den Luftsaum des Eises vorstoßt, d. i. etwa 72-80 Std. vor dem Schlüpfen, und verändern sich dann entsprechend dem Gesetzen des Wachstums.

Die Beschreibung berichtet sich zunächst auf flugfähige Tiere im Alter zwischen 80 und 135 Tagen, also auf jenes Stadium, bei dem die Beobachtung der Lautentwicklung beendet wurde.

3.2.1. Trachea

Die Trachea beginnt an ihrem kranialen Ende mit dem Larynx, der vom Stellknorpel und vom Ringknorpel und seinen Fortsätzen gebildet wird; er kann durch die Musculi aporter et sphincter laryngis geöffnet und geschlossen werden. Die Trachea setzt sich dann als ein allseitig geschlossenes, durch Knorpelspangen verstärktes Rohr kaudalwärts fort. Die lichte Weite nimmt von kranialen Ende bis etwa zur halben Länge des Rohres ab, erweitert sich dann wieder, erreicht bei etwa 3/4 der Länge die maximale lichte Weite und nimmt erneut wieder ab bis zum Beginn der Trommel, welche aus den letzten 4 bis 5 caudalen Knorpelringen gebildet wird. Schleifenbildungen der Trachea oder besondere Ausbildungen der Trommel, wie sie bei vielen anderen Anatidae vorkommen, fehlen den Gänser.

Begleitet wird die Trachea auf über 1/3 ihrer Länge vom paarigen Musculus trachealis, welcher am Ringknorpel entspringt und oberhalb der Trommel in die Faszie der Trachea ausstrahlt. Er kann die Trachea aktiv verkürzen. Gedehnt wird sie passiv, wenn der Hals sich streckt. Ein weiteres Paar von Muskeln entspringt am dorsalen Drüsensekret der Coracoiden und inseriert nach u-förmigem Verlauf kranialwärts der Trachea, in diesen einstrahlend, Anser indicus und A. albifrons besitzen außerdem ein zweites Muskelpaar, welches kranialwärts des ersten Paares inseriert und am dorsokranialen Rand des Sternums entspringt. Diese Muskelpaare verändern die lichte Weite der Trachea.

Länge und Weite der Trachea, Länge des M. trachealis und Inserierungsstellen der Musculi ypsilon-trachealis zeigt Tab. 3. Die prozentualen Proportionen der Tracheallänge zur Länge des M. trachealis wie zur Abweichung des M. ypsilon-trachealis und das Verhältnis von größerer zu kleinerer lichter Weite der Trachea scheinen für die Art (auch während der Entwicklung) konstant zu sein.

3.2.2. Syrinx

Unter Syrinx wird der Bereich verstanden, der sich zwischen dem caudalen Ende der Trachea und den Bronchien befindet und bei den Gänsern aus zwei Paaren häufiger Membrane, den Membranae tympaniformes externae, sind zwischen dem ersten und zweiten Brachien-
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten 265

Im Bereich der Syrinx wurde bei den Gänser keine Muskulatur gefunden. Abb. 9 zeigt die Unterschiede der untersuchten Arten.

Tab. 3: Beziehungen der Trachealänge zur Länge des Musculus trachealis und der Abduktion des Musculus ypsilon-trachealis sowie Weite der Trachea und Verhältnis von größer zu geringer lichter Weite. (Alle Daten stammen von frischgetöteten Tieren.)

<table>
<thead>
<tr>
<th>Trachea Länge</th>
<th>Musc. trach. Länge</th>
<th>L. Trachea / L. Musc. tr</th>
<th>Abzw. d. Musc. y. tr. Länge</th>
<th>L. Trachea / L. Musc. y. tr.</th>
<th>Trachea Weite</th>
<th>Verhältnis max / mm Weite</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,0 cm</td>
<td>8,1 cm</td>
<td>94,0 cm</td>
<td>7,55 cm</td>
<td>88,0 mm</td>
<td>5,5 mm</td>
<td>1,95</td>
</tr>
<tr>
<td>18,8 cm</td>
<td>17,6 cm</td>
<td>93,5 cm</td>
<td>16,1 cm</td>
<td>85,0 mm</td>
<td>9,5 mm</td>
<td>1,90</td>
</tr>
<tr>
<td>28,0 cm</td>
<td>28,2 cm</td>
<td>94,0 cm</td>
<td>23,7 cm</td>
<td>85,0 mm</td>
<td>5,0 mm</td>
<td>1,85</td>
</tr>
<tr>
<td>32,0 cm</td>
<td>30,1 cm</td>
<td>94,0 cm</td>
<td>27,2 cm</td>
<td>85,0 mm</td>
<td>12,0 mm</td>
<td>1,85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser indicus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,3 cm</td>
</tr>
<tr>
<td>20,2 cm</td>
</tr>
<tr>
<td>40,2 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser caerulescens</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,0 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser albifrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,0 cm</td>
</tr>
<tr>
<td>13,5 cm</td>
</tr>
<tr>
<td>42,0 cm</td>
</tr>
<tr>
<td>46,3 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branta canadensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>66,3 cm</td>
</tr>
</tbody>
</table>

Wie Abb. 9 und Tabellen 4 und 5 zeigen, lassen sich bei adulten Gänser mehrere Syrinxarten unterteilen.

a) Beide Membranflächen sind beim Gänser etwa gleich groß, bei der Gans sind die inneren Flächen sehr viel größer als die äußeren; der Bronchidemus ist lang (zwischen 0,7 bis 1,0 cm bei adulten Tieren). Geschlechtsdimorph schaut nicht nur die Größe der Membr. ext., sondern auch die Volumenfähigkeit der Saccus clavaclarks zu sein, die Gänser haben ein kleineres Volumen als die Gänser. Die zu dieser Gruppe gehörigen Arten Anser albifrons, A. brachyrhynchus, A. fahalii zeigen als adultes Vögle einen deutlichen Sexualdifferentialismus in der Stimme, die Laute der Gänser sind erheblich höher als die der Gans.

c) Überlange Membr. ext., wie sie von Stresemann für Branta canadensis erwähnt werden, konnte ich bei den untersuchten Exemplaren nicht finden; die Membr. ext. waren jedoch vom dritten Bronchialhalbring unterteilt. Vermutlich lag meinen Untersuchungen eine andere Rasse zugrunde; Branta canadensis ist ja in eine Reihe von Rassen aufgespalten.

1 Trachea, 2 Trommel, 3 Membranae tympaniformes externae, 4 Membranae tympaniformes internae, 5 Brondchadesmus, 6 Foramen interbrachiale, 7 Bronchien.

Tab. 4: Beziehungen zwischen Tracheenlänge, Flächengröße der Membrane und dem Verhältnis von Membr. tymp. ext. zu Membr. tymp. int.

<table>
<thead>
<tr>
<th>Art</th>
<th>Trachee Länge cm</th>
<th>Fläche Membr. int. mm²</th>
<th>Fläche Membr. ext. mm²</th>
<th>Verhältnis Int. / ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anser indicus</td>
<td>8,6</td>
<td>56</td>
<td>3,78</td>
<td>1,48 : 1</td>
</tr>
<tr>
<td></td>
<td>10,2</td>
<td>89</td>
<td>4,58</td>
<td>1,9 : 1</td>
</tr>
<tr>
<td></td>
<td>18,6</td>
<td>600</td>
<td>21,0</td>
<td>2,85 : 1</td>
</tr>
<tr>
<td></td>
<td>28,0</td>
<td>182,0</td>
<td>55,0</td>
<td>2,95 : 1</td>
</tr>
<tr>
<td></td>
<td>32,0</td>
<td>247,0</td>
<td>70,0</td>
<td>3,5 : 1</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>10,2</td>
<td>12,5</td>
<td>7,0</td>
<td>1,78 : 1</td>
</tr>
<tr>
<td></td>
<td>22,2</td>
<td>71,5</td>
<td>26,7</td>
<td>2,67 : 1</td>
</tr>
<tr>
<td></td>
<td>24,0</td>
<td>84,0</td>
<td>48,0</td>
<td>1,76 : 1</td>
</tr>
<tr>
<td></td>
<td>36,0</td>
<td>250,0</td>
<td>15,0</td>
<td>1,6 : 1</td>
</tr>
<tr>
<td></td>
<td>40,0</td>
<td>298,0</td>
<td>16,0</td>
<td>1,7 : 1</td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>30,0</td>
<td>88,0</td>
<td>7,7</td>
<td>1,14 : 1</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>138,0</td>
<td>6,3</td>
<td>2,11 : 1</td>
</tr>
<tr>
<td>Anser fabalis</td>
<td>37,8</td>
<td>7,7</td>
<td>57,7</td>
<td>1,32 : 1</td>
</tr>
<tr>
<td></td>
<td>37,8</td>
<td>97,5</td>
<td>47,5</td>
<td>1,95 : 1</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>11,0</td>
<td>9,0</td>
<td>8,0</td>
<td>2,65 : 1</td>
</tr>
<tr>
<td></td>
<td>13,9</td>
<td>18,0</td>
<td>16,0</td>
<td>2,05 : 1</td>
</tr>
<tr>
<td></td>
<td>16,3</td>
<td>290,0</td>
<td>48,0</td>
<td>1,8 : 1</td>
</tr>
<tr>
<td></td>
<td>19,8</td>
<td>290,0</td>
<td>48,0</td>
<td>1,8 : 1</td>
</tr>
</tbody>
</table>

Tab. 5: Länge des Bronchadesmus a)

a) Ausser eigenen Präparaten wurden für Tab. 4 und 5 auch Exemplare der Staatssammlung HEINRoth und der Sammlung in Slimbridge (England) verwendet.

<table>
<thead>
<tr>
<th>Art</th>
<th>Bronchadesmus Länge d. Verwachschung cm</th>
<th>Art</th>
<th>Bronchadesmus Länge d. Verwachschung cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. albifrons</td>
<td>1,0</td>
<td>A. anser</td>
<td>0,5</td>
</tr>
<tr>
<td>A. branchyche</td>
<td>0,7</td>
<td>A. caerulescens</td>
<td>0,2</td>
</tr>
<tr>
<td>A. fabalis</td>
<td>0,8</td>
<td>A. indicus</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Erregung, Ontogenie und Funktion der Bronchi.

Am Beginn der Bronchien oder des bronchialen Weits der zugehörigen Trachea erweitern sich die Bronchien auf etwa 40% ihrer Länge und weiten sich ebenfalls zu. Der Anzahl der Anzahl der Anzahl der Luftströmung erreicht.

3.2.4. Lider

Die Luftströmung wird durch die inspiratorische Nervenfaser Saccus clavicaudalis

Erschütterungen unpaarer Saccus clavicaudales.

Die Lider sind durch die Muskulatur der Trachea und die Aorta und die großen kopfnahe Venen.
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

3.2.3. Bronchien

Bronchien werden die paarigen, an die Membr. tym. kaudalwärts anschließenden und
den Lungen führenden Rohre genannt. Streng abgegrenzt sind die Bronchien von den
Membr. tym. int. nur bei einigen Arten, deren Membran relativ kurz und durch einen
Knorpelring begrenzt werden, dem noch mindestens 6 Knorpelringe bis zum Eintritt in die
Lunge folgen und die einen langen Bronchidesmus haben (Anser albirostris, A. brachy-
rynchos, A. fabalis). Bei den anderen Arten (Anser indicus, A. caerulescens, A. anser,
Branta canadensis) reicht die Membr. tym. int. bis knapp vor der Eintritt in die Lunge
und der letzte esophago-trachealische Bronchialring begrenzt sie hier; man könnte vielleicht
von bronchialen Bereich der Membr. tym. int. nach der Verwachungsstelle der beiden Mem-
branen sprechen. Bei der erstgenannten Arten ist das gesamte Rohr durch Knorpelringe
verstärkt, bei den letzten Arten sind jeweils nur die äußeren Seiten der Bronchien durch
Knorpelbogen versteift, während die inneren, einander zugekehrten Seiten durch die ver-
längerte Membr. tym. int. gebildet werden.

Am Beginn der Bronchien oder des bronchialen Bereichs sind die Rohre zur mittleren
ersten Seite der zugehörigen Trachea erweitert. Bis zum Eintritt in die Lunge verengen
sich dann die Bronchien auf etwa 40% dieser Weite. Die Anzahl der Knorpelringe oder
Ringe schwankt individuell, außerdem können die Bronchienhälfte eine unterschiedliche
Anzahl an Knorpelringen enthalten.

3.2.4. Luftsäcke

Die Luftsäcke werden entsprechend ihrer Versorgung mit Luft inspiratorische oder
inspiratorische genannt.

Exspiratorischer unpaarer Saccus clavicularis:

Er umhüllt den oberen Brustraum. Seine Wände ziehen kranial lateral den Gabel-
kanal folgend zu Schultergelenk und Halswirbelsäule und bilden, den Oesophagus aus-
schließend, eine den Hals vom Brustraum trennende Decke. Diese wird von der Trachea
durchbrochen und läßt sich aufblähen; die Trachea liegt ihr dann zum Sternum bis knapp
vor der Befestigung der Decke an der Halswirbelsäule locker auf. Lateral reicht der Saccus bis
durch die Lunge, kaudal bis zum Herzen, dorsal bildet das Sternum die Begrenzung. Der Höhl-
raum des Saccus cl. durchziehen, ihrerseits mit dem Schleimhautepithel des Saccus um-
kleidet, frei an den Musclici vysilo-trachealibus aufgehängt, Trachea, Syrinx und Bronchien
sowie die Aorta und die großen kopf- und armewärtig abzweigenden Arterien. Die zu-
und abführenden Luftkanäle des Saccus cl. zweigen von dem
Ventralbronchus der Lunge ab
und münden knapp unterhalb
der Austrittsstelle der Articella
c. in den Saccus cl.

Abb. 10: Oberer Teil des Sac-
cus clavicularis von Anser in-
dicus. Links ohne, rechts mit
Luftfüllung

<table>
<thead>
<tr>
<th>Art</th>
<th>Bronchidesmus</th>
</tr>
</thead>
<tbody>
<tr>
<td>anser</td>
<td>0,5 cm</td>
</tr>
<tr>
<td>caerulescens</td>
<td>0,2 cm</td>
</tr>
<tr>
<td>indicus</td>
<td>0,2 cm</td>
</tr>
</tbody>
</table>

Inspiratorische Luftsäcke, Saccus thoracales und abdominales:

Lateral schließen sich, nicht direkt mit dem Saccus cl. verbunden, die paarigen Sacci
thoracales an, sich den Rippen entlang erstreckend. Die zuführenden Kanäle zweigen vom
Stammbronchus ab, die abführenden münden in den Ventralbronchus. Die aus einer Reihe von
Ausbuchtungen bestehenden ebenfalls paarigen Sacci abdominales durchziehen die freien
Räume der Bauchregion. Auch ihre zuführenden Kanäle zweigen vom Stammbronchus ab,
die abführenden münden in den Ventralbronchus. Die Luftsäcke haben untereinander keine
Verbindung, der Luftaustausch geht immer durch die Lungenflügel.

3.3. Entwicklung

Die allgemeine Entwicklung der Tiere wird durch die Gewichtszunahme mit steigendem Alter in Abb. 11a—d repräsentiert. Anser albiifrons, A. caerulescens und Branta canadensis zeigen eine etwa gleich große Wachstumsrate von 60—64 g/Tag (Abb. 11b—d). Anser indicus dagegen wächst nur 40 g/Tag (Abb. 11a). Dies dürfte von der normalen geogra-

Text continues on the next page...
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Die angeführten Zahlen beziehen sich auf ausgewachsene, normal entwickelte Gösse. Ein Geschlechtsdimorphismus während der ersten Wachstumsphase war nur bei Branta canadensis festzustellen, ist aber mit den wenigen vorliegenden Werten noch nicht sicher.

Die Punkte entsprechen Einzelwerten, Durchschnittswerte von je 5 adulten

Abb. 12: Beziehung zwischen Gewicht und Tracheenlänge.

- Anser indicus, • A. caerulescens, + A. albifrons, ▲ Branta canadensis

Die Meßpunkte sind Einzelwerte von frischgebrüten Tieren, die entsprechende Werte für die Membranlängen dieser Tiere finden sich in Abb. 13. Der Pfeil zeigt den Beginn des Stimmbruchs an

Abb. 13 zeigt die Beziehung zwischen Tracheenlänge und der Flächengröße der Membranae tympaniformes. Die Daten von Anser indicus wie auch die Entwicklung der Frequenzen deuten darauf hin, daß die Membr. tym. noch nach Beendigung des Längenwachstums der Trachea weiter wachsen. Löt...
der liegen keine Daten darüber vor. Wie auch aus Tab. 4 ersichtlich, unter-

Welchen Einfluß Längen- und Breitenwachstum der Trachea und der Membran auf die physikalischen Parameter der Laute haben, soll erst im Anschluß an die Besprechung der Parameter dargestellt werden.

4. Mechanismus der Lauterzeugung

4.1. Methode

Die Erzeugung der Laute wurde sowohl am lebenden Tier beobachtet als auch durch Anblasversuche unter verschiedenen Bedingungen am toten Tier untersucht (bei Anser albirotrix und Branta canadensis nur bei erwachsenen Individuen, bei anderen Arten auch an Gänsern). Daten von lebenden Tieren wurden teils durch Auswertung von Photographien gewonnen, teils durch direkte Beobachtung an sehr zahnlosen Gänsern, die es ohne Beunruhigungen duldeten, daß man sie mit der Hand berührte, um das An- und Abschwellen der Luftsäcke während der Lautäußerung taktil zu kontrollieren.

4.2. Bildung der Laute

Der Lauterzeugungsmaschinapparat ist Teil des Atmungsaussases, die Bildung eines Lautes ist entsprechend eng mit der Atmung verbunden, sie soll daher zuerst beschrieben werden.

Einatmung

Heben sich die Rippenbogen, so werden die thorakalen und abdominellen Luftsäcke gedehnt, die Luft strömt durch Trachea und Bronchien zur Lunge und in die inspiratorischen Luftsäcke. Zugleich wird auch die Luft aus den exspiratorischen Luftsäcken abgesogen und über die Lunge den inspiratorischen Luftsäcken zugeführt.

Ausatmung

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Vogelkörper enthaltene Luft kann, ohne daß erneut Außenluft einströmen muß, von den exspiratorischen zu den inspiratorischen Luftsäcken nach Art gekoppelter Blasebläge bewegt werden.

Lautgebung

Bei den Gänser ist keine inspiratorische Lautgebung bekannt; im Gegensatz dazu gibt es bei den Ossines auch inspiratorische Lautgebung.

4.3. Funktion des Saccus clavicularis

Die Diskussion um die Funktion des Saccus cl. geht von folgenden gegensätzlichen Standpunkten aus: Herissaut (1753) und Rüppell (1933) sehen in der Lage des Syrinx im clavicularen Luft sack . . . die physiologische Grundlage und Voraussetzung für die besondere Art der Läuterzeugung im Stimmapparat der Vögel“ (Rüppell S. 450). Sowohl Rüppell wie Herissaut öffneten den Saccus cl. an lebenden Tieren wie bei Anblasobjekten, worauf die Stimme der Vögel verschwand; bei Schließung der Öffnung kehrte sie wieder; ein Experiment, das ich mit gleichem Erfolg wiederholte habe. Krankengeschichte und Sek-
Erzeugung, Ontogenie und Funktion

In der vorausgegangenen Diskussion war es primär für die Lautgebung notwendig, im Moment der Lauterzeugung können die Lauterzeugungsapparate auf den Einfluss dieser Bestandteile im folgenden Abschnitt nochmals eingegangen werden.

4.4. Atemmechanik

Bei Erzeugung der multisoliden Laute spielt eine Oscillation der Luftlsäcke eine wichtige Rolle. Larynxpaltisches, Anser indicus hat bei geschlossenen, anderen Arten also auch Schnabel bei allen Arten weiter geöffnet.

Beim Trillerlauten ist ein Spurensystem für eine Vibration des Schnabels, Nitelator et Retractor anguli oris hat der Schnabel selbst ist geschlossen.

Beim Zischen geht der Luftstrom durch den belüfteten Rachenraum, nicht zu geordneten Schwingungen, vielmehr im Schnabel-Rachenraum, durch die Kontraktion der Musc. hyoideas, die die Zunge und den Schnabel durch Entstehung lateraler Spalten, die Zunge kann mehr oder weniger Schnabel ist weit geöffnet.

Art und Weise der Artikulation der Membran bleiben wahrscheinlich unverändert gleich.

Z. f. Tierpsychol. Bd. 27, Heft 5
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

In der vorausgegangenen Diskussion war nur von der Erzeugung der primär für die Lautgebung notwendigen Spannung der Membrane die Rede. Im Moment der Lauterzeugung können jedoch einige der Bestandteile des Lauterzeugungssapparates auf den entstehenden Laut einwirken. Die Auswirkung dieser Bestandteile wird im folgenden Kapitel beschrieben.

4.4. Artikulation

Bei den Trillerlauten ist eine schwache Oscillation der Luftsäcke zu spüren sowie eine Vibration der Schnabelkante zu beobachten (die Musculi levator et retractor anguli oris heben und senken die Schnabelkante), der Schnabel selbst ist geschlossen.

Beim Zischen geht der Luftstrom den normalen Weg der Ausatmung; es kommt also nicht zu einem starken Druckanstieg im Saccus cl. und somit auch nicht zu geordneten Schwingungen der Membr. tym. Das Zischen entsteht vielmehr im Schnabel-Rachenraum: Der Weg des Luftstromes verengt sich durch die Kontrakturen der Musculi byomandibularis transversus und mylohyoideus, die die Zunge und den Kehlkopf gegen den Gaumen drücken; dadurch entstehen laterale Spalten, die die Wirbelbildung beim Zischen bedingen. Die Zunge kann mehr oder weniger stark zurückgezogen werden. Der Schnabel ist weit geöffnet.

Art und Weise der Artikulation wie auch der Erzeugung der Spannung der Membrane bleiben während der gesamten Entwicklung bei allen Arten unverändert gleich.
5. Ontogenie der Lautäußerungen

5.1. Darstellung im Spektrogramm

Da die Form der Spektrogramme von nachstehend behandelten Parametern eines Lautes abhängt, will ich hier nur kurz die charakteristischen Merkmale erwähnen: Frequenzbereich des Lautes oder der Silbe samt den Oberkanten und die Dauer des Lautes.

Die Spektrogramme je einer Art zeigen in beiden dargestellten Lauttypen die Laut eines Individuums.

Abb. 15: (Linke Reihe) *Anser albinornis*, Entwicklung des Weinlautes
Alter in Tagen von o. nach u.: 3 Tage, 24 Tage, 21 Tage, 40 Tage (Distanzruf), 44 Tage (Jammern).

Abb. 16: (Rechte Reihe) *Branta canadensis*, Entwicklung des Weinlautes.
Alter in Tagen von o. nach u.: 3 Tage, 30 Tage, 28 Tage, 77 Tage (Distanzruf und Jammern), 80 Tage (Distanzruf im Flug).
Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz; die Markierung beginnt bei 1 kHz
Abszisse: Der Abstand der Zeitmarken beträgt 0,5 sec.

5.2. Entwicklung der einzelnen physikalischen Parameter

5.2.1 Frequenz

Trägt man die intensivsten Teiltöne nach Lauttypen getrennt gegen die Zeit auf, so ergeben sich Kurvenscharen, deren Tendenzen ähnlich sind (Abb. 20, 21). Die Werte der Frequenzen zeigen keinen kontinuierlichen Abfall, wie

aus der Beziehung von Tracheenlänge mit der Entwicklung der Laute im Ei, der Anstieg zum dritten Wachstumsphase, der Aufhöhungsweg und einer besonderen Markierung der Stimme, dem Stimmbach. Die Lauttypen einer Art. Die Frequenzzurziehung zwischen Syrinx und Tracheenlänge der Vögel mit der einer als ein eng gekoppeltes System der Druckdiaphragmatische Zunge und die Trachea...
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Lautäußerungen

Spektrogramm

Nachstehend behandelten Parametern eines charakteristischen Merkmals erwähnen: Frequenz- und Dauer der Lauten.

Abb. 17: (Linke Reihe) *Anser caerulescens*, Entwicklung der Stimmfühlungslauten. Alter in Tagen von 0. nach u.: 1 Tag, 9 Tage, 45 Tage, 140 Tage, 2 Jahre und 5 Tage

Abb. 18: (Mittlere Reihe) *Anser indicus*, Entwicklung der Stimmfühlungslauten. Alter in Tagen von 0. nach u.: 3 Tage, 41 Tage, 60 Tage, 70 Tage, 100 Tage.

Abb. 19: (Rechte Reihe) *Branta canadensis*, Entwicklung der Stimmfühlungslauten. Alter in Tagen von 0. nach u.: 1 Tag, 28 Tage, 49 Tage, 77 Tage, 1 Jahr und 21 Tage. Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz; die Markierung beginnt bei 1 kHz. Abzisse: Der Abstand der Zeitmarken beträgt 0,5 sec.

Abb. 20: *Anser indicus*, Entwicklung der Weinlauter bei drei Individuen, I, II, III. Die Kurvenpunkte sind Durchschnittswerte von je 10 Messungen

Abb. 21: *Anser indicus*, Entwicklung der Stimmfühlungslauter und der Triller bei Individuum I der Abb. 20

Andert sich in einem solchen System, bei konstanter Länge des Resonators, die Größe der schwingenden Zunge, wachsen also die Membr. tym., so wird die Frequenz des erzeugten Tones absinken und im Resonanzfall jeweils auf den Wert der Eigenschwingung des Resonators zurückgehen. Das Verhältnis von Maximum- zu Minimumfrequenz nimmt dabei im Verhältnis ganzer Zahlen, 1 : 2, 2 : 3, 3 : 4, 4 : 5 etc. ab. Die Größe des Ziebereiches wie auch die Höhe des Zahlenverhältnisses sind von der Dämpfung abhängig, je größer die Dämpfung, desto geringer werden die Tonsprünge. Wird zusätzlich der Resonator verlängert, wächst also auch die Trachea, so verändern sich die Eigenschwingungen beider Systeme und die Kurve, welche sich dann aus den Werten der Tonhöhen ergibt, wird, abhängig vom Wachstumsvorhängen der Partner des Systems, ein mitunter unregelmäßiges Muster an Tonsprünge zeigen, mit einer allgemeinen Tendenz zum Absinken der Frequenz.

Lauttypen

Einsilbige Lauter

Vom Bereich des dritten Minimums aufwärts zeigen die Weinlauten eine geringe Steigung in der Spektrogrammform. Dann allmählich und später noch zu besprechenden drei Lautreihen auf: Die erste bleibt beim ersten Minimum, macht dann die in die rechte Tonspur; die zweite steigt im späteren Alter langsam ab; die dritte, die in den anderen Reihen und tritt nur während der Diastase auf, die durch den Stimmbruch geformte Minimum bleibende Lautreihe erweist, die zweite ist ein neu aufgetretender Laut.

Mehrsilbige Lauter

Individuelles

Korrelation mit anderen...

In den folgenden zwei Absätzen soll man fundierte Beobachtung der Kurven gestützt werden, dass die Frequenzen nicht in gleicher Zeit, sondern die Vergleich die intensivsten Töne der *Anser indicus* und der *Branta canadensis* und an den höchsten sind die Größenteile der Membr. tym., Membr. tym. int., *A. albirostris* die...
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Trachea, wird der erste Resonanzsprung keine Oktave sein, sondern ein kleineres Zahlenverhältnis aufweisen. Tatsächlich ist das Verhältnis für die Kurven der Weinlaute Abb. 23 bei Anser indicus 2 : 3, bei A. caerulescens und Branta canadensis 3 : 4, A. albinornis 4 : 5. Für den nächsten Resonanzsprung läßt sich das Zahlenverhältnis nicht für alle Individuen sicher, da die einzelnen Messungen mit drei bis vier Tagen zu weit auseinanderlagen, als daß Minima oder Maxima exakt getroffen wurden; der dritte Resonanzsprung zeigt bei einigen Arten den Wert einer Oktave.

Lauttypen

Einsilbige Lauten

Vom Bereich des dritten Minimums an weichen die Kurven der Weinlaute aller Arten von denen der übrigen Lauttypen ab. Bis zum dritten Minimum zeigen die Weinlaute eine geringe Streuung sowohl in der Frequenzhöhe wie in der Spektrogrammform. Dann allerdings spalten sie sich, wie das Spektrogramm und später noch zu besprechende physikalische Parameter zeigen, in drei Lautreihen auf: Die erste bleibt zu Anfang noch auf dem Wert des dritten Minimums; macht dann die in der normale Reihe des Weinlautes gehörenden Tonsprüinge; die zweite steigt auf das dritte Maximum und sinkt im späteren Alter langsam ab; die dritte ist ein intermediärisprodtukt der beiden anderen Reihen und tritt nur während der kurzen zeitlichen Übergangsphase auf, die durch den Stimmbroch gekennzeichnet ist. Die erst die auf dem Minimum bleibende Lautreihe erweist sich als identisch mit dem Jammern, die zweite ist ein neu auftretender Lauttyp, der Distanzruf.

Mehrsilbige Lauten

Individuelle Variation

Korrelation mit anatomischen Befunden

In den folgenden zwei Absätzen sollen die Arten verglichen und die anatomischen Befunde in Beziehung zu den Kurven gesetzt werden. Für den Artenvergleich werden die Frequenzwerte nicht gegen die Zeit, sondern gegen die Tracheenlänge aufgetragen.

Vergleicht man die intensivsten Frequenzen der Weinlaute, so ergibt sich, daß Anser indicus die tiefsten Töne erzeugt, es folgen A. caerulescens, Branta canadensis und am höchsten sind die Laute von A. albinornis. Dem entspricht das Größenverhältnis der Membr. tympan. int. (Abb. 13). A. ind. hat die größten Membr. tympan. int., A. albinornis die kleinsten. In den ersten drei Tagen, aber
Die absolute Intensität nimmt beim Weinen und beim Trilled, Trillerlauten und den Stimmfühlungen derart ab, dass der Unterschied zwischen dem Weinen und dem Trilled und Trillerlauten sehr rasch auf ihre jeweilige höhere Intensität derart abnimmt.

Die über den Tag verstreute Schwankung erkennen, auf die aber nur durchdringen, äußern sich *Anser indicus*, *Anser caerulescens* und *Branta canadensis*. Während der Entwicklung von *Anser indicus* und *Anser caerulescens* ist am stärksten in den Intensitäten; dafür zeigen die stärksten, *Anser indicus* und *Anser caerulescens* eine ähnliches Wachstumsverhältnis zeigen, was sich an den Wachstumskurven auch nachweisen läßt.

Frequenzbereich

Der Abstand von höchster zu tiefster im Spektrum sichtbarer Frequenzlinie des Grundtones bewegt sich bei den Stimmfühlungslauten und den Trillern um eine Oktave, hat also das Verhältnis 1:2, bei Weinen und Grüssen ist er größer als eine Oktave, bei Jammern kann er auch geringer sein.

Das Verhältnis ändert sich kaum während der Entwicklung, es kann beim Weinen auf eine Oktave absinken, bei Stimmfühlungslauten und Trillern weniger als eine Oktave betragen. Es verschiebt sich jedoch stark der zeitliche Anteil, den die Frequenzen an der „Lautform“ im Spektrum haben; sind zuerst die intensivsten Frequenzen auch die zeitlich längsten, so verlängern sich mit zunehmenden Alter auch die tieferen Frequenzen, d. h. der Geräuschcharakter des Lautes nimmt zu.

5.2.2. Intensität

Lauttypen

Von den leisen Trilled, Trillerlauten steigt die Intensität über Stimmfühlungslauten, Grüssen, Jammern bis zum Weinen an. Diese Anordnung gilt für alle Arten und bleibt während der Entwicklung erhalten.
Die absolute Intensität nimmt im Verlauf der Entwicklung bei den Trillerlauten und den Stimmfühlungsauten geringfügig, bei Grüssen, Jammern und Weißen stark zu.

Bei den mehrsilbigen Lauten schwankt die Intensität der einzelnen Silben stärker als bei den einsilbigen, die nach zwei bis drei leisern Anfangslauten sehr rasch auf ihre jeweilige höchste Lautstärke kommen.

Die über den Tag verstreuten Messungen lassen eine tageszeitliche Schwankung erkennen, auf die aber nicht weiter eingegangen werden soll.

Arten

Die Gösse der einzelnen Arten sind sehr unterschiedlich lautstark: am durchdringendsten äußern sich *Anser indicus*, am leisesten sind *Branta canadensis*. Während der Entwicklung nehmen die Stimmfühlungsauten von *Anser caerulescens* am stärksten in der Intensität zu, die der *Branta canadensis* am wenigsten; dafür zeigen diese die stärkste Zunahme der Intensität beim Weißen, *Anser albifrons* die geringste.

Korrelation mit anatomischen Befunden

Die Intensität ist, ebenso wie die Frequenz, positiv mit dem Druck im Saccus cl. korreliert, mithin müssen auch Frequenz und Intensität positiv korrelieren.

Tab. 6 Die Werte der ersten Reihe beziehen sich auf Drei Tage alte Gösse, die Werte der zweiten Reihe auf die Zeit des dritten Maximums jeder Art.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 4</td>
<td>3 2</td>
<td>3 2 3 3 3</td>
<td>3 3</td>
<td>1 1</td>
<td>55</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4 4</td>
<td>3 2</td>
<td>2 3 3 3 3</td>
<td>3 3</td>
<td>1 1</td>
<td>75</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td>2 3</td>
<td>4 1 2 2 2</td>
<td>2 2</td>
<td>3 3</td>
<td>55</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td>2 3</td>
<td>3 2 2 2 2</td>
<td>2 2</td>
<td>3 3</td>
<td>75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>4 1</td>
<td>1 4 4 4 4</td>
<td>4 4</td>
<td>2 2</td>
<td>50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>4 1</td>
<td>1 4 4 4 4</td>
<td>4 4</td>
<td>2 2</td>
<td>75</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td>1 4</td>
<td>2 3 1 1 1</td>
<td>1 1</td>
<td>4 4</td>
<td>80</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

miteinander korreliert sein. Das trifft jedoch nicht immer zu. Die Lauttypen einer Art haben, geordnet nach Frequenzhöhe, eine andere Reihenfolge, als wenn man sie nach der Intensität ordnet (s. Tab. 6).

5.2.3. Klangfarbe, Obertöne

Lauttypen

Die Anzahl der Obertöne steigt bei allen Arten von den Stimmfühlungs- lauten zum Weinen an; bei den Trillerlauten schwankt sie stark. Während der Entwicklung nimmt die Anzahl der Obertöne bei den mehrsilbigen Lauten ab, sie erhöht sich erst wieder nach Erreichen des 3. Maximums, wenn die Laute auf die Tonhöhe der adulten Tiere absinken. Im höheren Alter sind Grundtöne und Obertöne nicht mehr scharf voneinander getrennt, die Anzahl der Obertöne nimmt dann bei allen Lauttypen wieder zu.

Arten

Anser albifrons zeigt bei allen Lauttypen die meisten, *Anser caerulescens* die wenigsten Obertöne. Dies gilt für die ganze Entwicklung.

Korrelation mit anatomischen Befunden

Wie die Dämpfung hängen auch die Obertöne von der lichten Weite der Trachea ab, und zwar in folgender Weise: auf eine sehr enge Trachea sprechen der Grundton und die tieferen Obertöne nicht an, bei einer weiten Trachea fallen die hohen Obertöne aus.

Klangfarbe

5.2.4. Dauer der Lautart

Die Länge der Silben und der Pausen ist charakteristisch für die Lauttypen (Abb. 24).

- **Trillerlaut**: Die Trillerlauten sind die kürzesten. Sie bestehen nur aus einem Silbenlauten. Die Silbenlänge ist die kürzeste Dauer der Lauten. Sie bleibt für die gesamte Dauer der Trillerlauten gleich.

- **Stimmfühlungsleiste**: Die Stimmfühlungsleiste charakteristisch Unterschiede in der Konstanz der Arten. Innerhalb einer Artenbestand liegt die Silbenlänge zwischen 2 und 3 Tagen, so daß eine Länge von 3 Tagen für verschiedene Individuen des gleichen Lauttypus betrachtet werden kann.

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Das Gänseohr bei 2800 Hz, die des Menschen bei etwa 1000 Hz; dieser Unterschied in der Empfindlichkeit ist wahrscheinlich auch mit einer Verschiedenheit der Klangempfindung verbunden.

5.2.4. Dauer der Silben

Lauttypen

Die Länge der Silben und der Pausen innerhalb eines Lautes sind charakteristisch für die Lauttypen (Abb. 24).

Grüßen

![Diagramm](attachment:image.jpg)

Grüßen: Beim Grüßen sind die einzelnen Silben länger als bei den Stimmfühlungs- und Trillerlaute und Grüsselaute gleicher Silbenanzahl deutliche zeitliche Längenverschiebung zeigen, die Grüsselaute sind immer länger als die Stimmfühlungs- und Trillerlaute;
Einsilbige Lauten: Jammern und Weinen sind einsilbige Lauten; die Silben der Weinaute sind die längsten, die der Jammern die zweitlängsten. Die Silbenlänge der Jammern bleibt konstant während der Entwicklung, die Silben der Weinaute zeigen zur Zeit des Stimmbruchs eine Aufspaltung ihrer Längen parallel zur Spaltung der Frequenzen in drei Reihen: die erste sinkt auf die Länge der Jammern, die zweite steigt meist um den doppelten Betrag auf die Länge der Distanzruhe, die dritte liegt intermediär zwischen der 1. und 2. Reihe (Abb. 24).

Arten

Die Längen der Trillerreihen liegen sehr eng zusammen, sie unterscheiden sich nur um wenige hundertstel Sekunden; ich fand weder eine inner- noch eine zwischenartliche Differenzierung.

Anders bei den Stimmfühlungsauten und dem Grüssen: Anser albiasons haben im Mittel die kürzesten Silben und die kürzesten Pausen, dann folgen Anser indicus, Branta canadensis und schließlich Anser caerulescens.

Bei den Weinauten ist sowohl die inner wie die zwischenartliche Variationsamplitude am stärksten ausgeprägt; die Arten stehen jedoch in anderer Reihenfolge als bei den Stimmfühlungsauten. Die kürzesten Silben haben beim Weinen Anser indicus, an zweiter Stelle folgen Anser albiasons, dann Anser caerulescens und Branta canadensis.

Korrelationen mit anatomischen Befunden

Die Reihenfolge der Arten bei den Silben der Stimmfühlungsauten und dem Grüssen scheint positiv korreliert mit der Dämpfung. Die Silbenlänge der Weinaute läßt sich jedoch nicht mit der Dämpfung korrelieren; ich vermute, daß noch andere Faktoren, wie die Größe der diversen Lufttäcke und damit die Luftmenge für die zeitliche Länge der Silben eine Rolle spielen.

5.25. Silbenanzahl je Laut

Interessant für diese Betrachtung sind nur die mehrsilbigen Lauten, mit einer Ausnahme: Branta canadensis können 2- bis 3silbige Jammernlaute äußern.

Lauttypen

Arten

Die Variationsbreite ist bei den einzelnen Individuen so groß, daß Artcharakteristika nur beim Grussen festzustellen sind. Die Grüsslaute der Anser albiasons können aus 8-13 Silben zusammengesetzt werden, die der Branta

canadensis aus 4-6 Silben, mit Beto-
Anser caerulescens aus 4-5 Silben, 2-7 Silben.

Die beigefügte Tab. 7 soll einen Ausblick geben.

<table>
<thead>
<tr>
<th>Anser indicus</th>
<th>III</th>
<th>II</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser caerulescens</th>
<th>II</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.6. Hütten

Erzeugung, Ontogenie und Funktion der Hütten

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

Die zunehmendem Alter nimmt die Silbenzahl der Grüßen nicht die lineare Beziehung zu der Bilanz an.

Sowohl die Silbenzahl als auch die Silbenkombinationen ändern sich. Die mittlere Silbenzahl der Silbenkombinationen sinkt von Anfang an.

Die Silbenkombinationen sind einländige Lauten; die Silbenlänge der Jammerlaute die zweitlängsten. Die Lautenlänge der Grünlaute und die mittlere Flexibilität der Silbenlänge der Silbenkombinationen sind in drei Reihen: die erste sinkt in der zweiten; die dritte liegt intermediär zwischen der ersten und der dritten Silbenkombination.

Tab. 7: Reihenfolge der Grünlaute. Aufgetragen sind die jeweils an dieser Stelle der Reihenfolge am häufigsten auftretenden Lauten.

<table>
<thead>
<tr>
<th>Anser indicus</th>
<th>Anser albirostris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anser caerulescens</th>
<th>Branta canadensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

5.2.6. Häufigkeit der Lauten

Die Anzahl der Lauten pro Tag ist unterschiedlich. Die Silbenlänge der Lauten korreliert mit der Dämpfung. Die Silbenlänge der Lauten korreliert mit der Dämpfung und der Dämpfung der Silbenlänge. Die mittlere Silbenlänge der Silbenlängen des Beg riffes Häufigkeit

Der Begriff Häufigkeit wird für folgende zwei Sachverhalte gebraucht: 1. relative Häufigkeit: sie gibt die Häufigkeit des Auftretens der einzelnen Lautarten während des Tages an, ohne die Anzahl der Lauten pro Zeiteinheit, also die Geschwindigkeit der Lautfolge, zu berücksichtigen. 2. absolute Häufigkeit: sie gibt die Anzahl der Lauten pro Zeiteinheit wieder (es wurden 100 sec gewählt), ohne Berücksichtigung der Häufigkeit ihres Auftretens.

Lautarten

Absolute Häufigkeit: Die absolute Häufigkeit aller Lauttypen nimmt von der ersten Lautäußerung im Ei bis etwa zum Zeitpunkt des ersten Maxima der Frequenzkurve zu, d. h., in den ersten Tagen äußert das Gänse, so-
lange es wach ist, beinahe ununterbrochen Laute. Die Werte sinken dann bis zur Zeit des Stimmbruchs langsam, bis Ende der Kleingefiedermauser schnell ab.

Ein aus seiner Familie entlassenes Tier von etwa 9 bis 10 Monaten Alter verstummt weitgehend.

An der Spitze der absoluten Häufigkeiten rangieren die Weinlaute; ihnen folgen die Jammerlaute, dann kommen das Grüßen und die Stimmfühlungslaute; den Schluss bilden die Triller (Abb. 26).

\[\text{Abbildung 26: } \textit{Anser indicus}\text{. Absolute Häufigkeit des Weinlautes und der Stimmfühlungslaute in je 100 sec. Die Kurvenpunkte entsprechen je 10 Durchschnittswerten} \]

Arten

5.2.7. Stimmbruch

Erzeugung, Ontogenie und Funktion der Lautarten

5.3. Korrelation der Laute mit Atmung

5.3.1. Atmung

Gössel, gleich welcher Art, atmen von Trillerlauten, am schnellsten. Beziehung bleibt während der Entwicklung der Atmungszüge wird bei allen Lauttypen mit steigendem Gewicht des Tieres fest.

<table>
<thead>
<tr>
<th>Art</th>
<th>Atmungszüge / min</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Anser indicus}</td>
<td>160</td>
</tr>
<tr>
<td>\textit{Anser caerulescens}</td>
<td>175</td>
</tr>
<tr>
<td>\textit{Anser albifrons}</td>
<td>145</td>
</tr>
<tr>
<td>\textit{Branta canadensis}</td>
<td>150</td>
</tr>
</tbody>
</table>

5.3.2. Defäkationsrate

Die Defäkationsrate läßt sich ermitteln. Bei allen Arten findet sich die höchste Defäkationsrate bei den Jammerlauten und Fortgelauten, Stimmfühlungslaute. Die höchste Defäkationsrate hat \textit{Anser indicus}, es folgen \textit{Anser caerulescens}, \textit{Anser albifrons} und \textit{Branta canadensis}.

<table>
<thead>
<tr>
<th>Art</th>
<th>Defäkation / m</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Anser indicus}</td>
<td>30</td>
</tr>
<tr>
<td>\textit{Anser caerulescens}</td>
<td>30</td>
</tr>
<tr>
<td>\textit{Anser albifrons}</td>
<td>25</td>
</tr>
<tr>
<td>\textit{Branta canadensis}</td>
<td>25</td>
</tr>
</tbody>
</table>

5.3.3. Befruchtung

Die Lautarten lassen sich mit der Befruchtung (zurückgelegte Wegstrecke) korrelieren. Die Befruchtung des Weinlautes zu bestimmten Stimmfühlungslaufen; bei den Trill...
5.3. Korrelation der Lauten mit Atmung, Defikation und Bewegungsunruhe

5.3.1. Atmung

Gössel, gleich welcher Art, atmen am langsamsten während der Außerungen von Trillerlauten, am schnellsten während des Weikens. Diese relative Beziehung bleibt während der Entwicklung bestehen, die absolute Anzahl der Atemzüge wird bei allen Lauttypen geringer, d. h., der einzelne Atemzug wird mit steigendem Gewicht des Tieres länger.

Tab. 8: Die ausgewählten Werte sind die Mittelwerte von je drei Tage alten Gösseln. Der Wert für die Triller bezieht sich auf den unkorrelierten Triller (s. a. S. 287)

<table>
<thead>
<tr>
<th>Art</th>
<th>Atemzüge / min</th>
<th>Art</th>
<th>Atemzüge / min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weilaut</td>
<td></td>
<td>Jammern</td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>160</td>
<td>Anser indicus</td>
<td>bis 120</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>175</td>
<td>Anser caerulescens</td>
<td>bis 165</td>
</tr>
<tr>
<td>Anser albinfons</td>
<td>145</td>
<td>Anser albinfons</td>
<td>bis 90</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>200</td>
<td>Branta canadensis</td>
<td>bis 100</td>
</tr>
<tr>
<td>Grünken</td>
<td></td>
<td>Stimmfühlungslauten</td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>95</td>
<td>Anser indicus</td>
<td>80</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>80</td>
<td>Anser caerulescens</td>
<td>55</td>
</tr>
<tr>
<td>Anser albinfons</td>
<td>70</td>
<td>Anser albinfons</td>
<td>80</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>80</td>
<td>Branta canadensis</td>
<td>80</td>
</tr>
<tr>
<td>Triller</td>
<td></td>
<td>Schlafen</td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>30</td>
<td>Anser indicus</td>
<td>25</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>30</td>
<td>Anser caerulescens</td>
<td>25</td>
</tr>
<tr>
<td>Anser albinfons</td>
<td>30</td>
<td>Anser albinfons</td>
<td>30</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>25</td>
<td>Branta canadensis</td>
<td>20</td>
</tr>
</tbody>
</table>

5.3.2. Defikation

Die Defikationsrate läßt sich ebenfalls mit den Lauttypen korrelieren: Bei allen Arten findet sich die höchste Rate während des Weikens, dann folgen Jammerlaut und Fortgelauten, Stimmfühlungslauten, Grünken und schließlich Trillerlauten. Die höchste Defikationsrate während des Weikens haben Anser indicus, es folgen Anser caerulescens, Anser albinfons und schließlich Branta canadensis.

Tab. 9: Die Werte beziehen sich auf drei Tage alte Gössel

<table>
<thead>
<tr>
<th>Art</th>
<th>Defikation / min</th>
<th>Art</th>
<th>Defikation / min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weilaut</td>
<td></td>
<td>Triller</td>
<td></td>
</tr>
<tr>
<td>Anser indicus</td>
<td>29 - 35</td>
<td>Anser indicus</td>
<td>0,2</td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td>32</td>
<td>Anser caerulescens</td>
<td>0,3</td>
</tr>
<tr>
<td>Anser albinfons</td>
<td>30</td>
<td>Anser albinfons</td>
<td>0,4</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>25</td>
<td>Branta canadensis</td>
<td>0,2</td>
</tr>
</tbody>
</table>

5.3.3. Bewegungsunruhe

Die Lauttypen lassen sich mit der Bewegungsunruhe (gemessen in cm/sec zurückgelegter Wegstrecke) korrelieren: Die stärkste Bewegungsunruhe ist bei Auflistung des Weilauts zu beobachten, dann abnehmend bei Jammern, Stimmfühlungslauten; bei den Trillerlauten ist sie gleich Null. Die Lauttypen
Grüßen und Fortgeblute lassen sich nur bedingt in dieses Schema einordnen, da sich während der Äußerungen dieser Laute die Bewegungsruhe entweder in starker gleichzeitiger Halsbewegung wie beim Grüßen äußert oder, wie bei den Fortgeh- und Abfluglauten, zusätzlich in einer charakteristischen Folge von Kopfschüttelbewegungen und in Schifflügen.

Die größte Bewegungsruhe zeigen Anser indicus, es folgen Anser caerulescens, Anser albifrons und schließlich Branta canadensis. Im Verlauf der Entwicklung werden die Entfernungen, die zurückgelegt werden können, größer.

5.4. Korrelation der Laute mit charakteristischen Bewegungen

Mit charakteristischen Bewegungen sind hier vorzugsweise die Kopf- und Halsbewegungen gemeint; Flügel- und Schwanzbewegungen konnten nicht immer eindeutig mit Lauten in Beziehung gesetzt werden. Ich habe mich daher auf Kopf- und Halsbewegungen beschränkt. In Abb. 27 sind die jeweiligen Haltungen, um die die Bewegungen schwanken können, dargestellt.

Erzeugung, Ontogenie und Funktion der Laute

Stimmfühlungslaute und Jammerlauten: Füllt man die charakteristischen Bewegungen gekoppelt.

Grüßen, Weinen, Warnen, Zischen: Haltungen positiv korreliert, d. h., sie treten in diesen Haltungen geäußert.

Die typische Haltung während der Grüßen erfolgt nach vorn gestreckte Hals. Abblendung des Partners kann der Hals steiler und schwankt der Hals im Rhythmus der Abweichungen von dieser Haltung. Grüßen kann, wenn die Grüßlaute in dem kann in einer Geschwindigkeitscharakteristik höheren den Hals charakteristisch weit nach unten* wegbiegen. (Das wurde nur beobachtet.)

Die Weinlaute werden mit empfindlichem, dabei das Göttel auch mit abgespreizten emporgereckten Hals + Weinelaut ist einem Gatter hindurchgeschleppt ist, gelöst, nicht findet, wenn es dazu den Hals.

5.5. Korrelation der Laute

Die Lauttypen lassen sich nicht nur durch die Tätigkeit, sondern auch mit anderen Tätigkeiten korrelieren: Junger Gans, Fressen, Trinken, Baden, etc.
bedingt in dieses Schema einordnen, Laute die Bewegungsruhe entweder so wie beim Grüssen äußert oder, wie in einer charakteristischen Folge der Flügel.

In den Anser indicus, folgen Anser gillich Branta canadensis. Im Verlauf von 2 Wochen, die zurückgelegt werden können,

Charakteristischen Bewegungen

aber vorzugsweise die Kopf- und Halsbewegungen konnten nicht immer eindeutig mit Lauten auf Kopf- und Halsbewegungen beschränkt sein, die die Bewegungen schwanken können.

Lauttypen

Stimmfühlungs- und Jammerlaute sind nicht mit bestimmten charakteristischen Bewegungen gekoppelt.

Grüßen, Weinen, Warnen, Zischen sind mit den in Abb. 27 gezeigten Haltungen positiv korreliert, d. h., rund 90% der Lautäußerungen werden in diesen Haltungen geäußert.

Die Weinlaute werden mit emporgestrecktem Hals geäußert; meist rennt dabei das Gössel auch mit abgespreizten Flügelchen herum. Die Korrelation emporgereckter Hals + Weinlaut ist so starr, daß ein Gössel, welches unter einem Gatter hindurchgeschlüpft ist, den Rückweg, auch wenn er groß genug ist, nicht findet, wenn es dazu den Hals herunternehmen muß.

Die charakteristischen Haltungen beim Warnen wie beim Zischen waren erst ab der 3. bis 4. Lebenswoche zu beobachten. Die Haltung während des Warnens wurde auch von den erwachsenen Tieren beibehalten; die Haltung beim Zischen richtet sich dann nach dem angezogenen Objekt.

5.5. Korrelation der Laute mit Tätigkeiten

Die Lauttypen lassen sich nicht nur mit charakteristischen Bewegungen, sondern auch mit Tätigkeiten korrelieren. Die normalen Tätigkeiten einer jungen Gans, Fressen, Trinken, Baden, Putzen, Schlafen sowie Ortsverände-
Erzeugung, Ontogenie und Funktion der Lautarten zeigen in ihrem Ablauf bestimmte Tätigkeiten geäußerten Lauten. Als Beispiele...

Wird dieser Ablauf von Störungen wirken, so wird auf diese Störung mit der Gans ohne die Störung getrillert haben, ist in der vorzugsweise Stimmfühlung Störungen mit Jammerlauten.

Die oben geschilderten Beziehungsgleitenden Lauten gelten für den ”Durchschnittskindes“ objektiert sich nicht vom Gösse entfernt Fühlungslauten und Trillern ist bei Entwicklungzeit erhalten und diese...

Unterschiedlich ist jedoch die Art der verschiedenen Tätigkeiten wie auch besonders „redselige“ Tierarten.

Zt. Tierpsychol. Bd. 27, Heft 3
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten 289

![Graph showing frequency of sound types]

28 b) Häufigkeit der Lautarten in Abständen von 15 sec nach dem Protokoll vom 2.6.1965

Wird dieser Ablauf von Störungen unterbrochen, die nicht alarmierend wirken, so wird auf diese Störung mit Stimmfühlungsauten reagiert, wenn die Gans ohne die Störung getrillert hätte. Wenn die Gans gerade in der Phase ist, in der vorzugsweise Stimmfühlungsauten geäußert werden, reagiert sie auf Störungen mit Jammerlauten.

Die oben geschilderten Beziehungen zwischen Tätigkeiten und die begleitenden Lauten gelten für den „Normalfall“, daß die Eltern oder Elternobjekte sich nicht vom Gösse entfernen. Die Verteilung von Jammern, Stimmfühlungsauten und Trillern ist bei allen Arten gleich, bleibt über die ganze Entwicklungsgeschwindigkeit erhalten und findet sich auch bei adulten Tieren.

Unterschiedlich ist jedoch die Anzahl an Lauten, die die Individuen während der verschiedenen Tätigkeiten äußern können, es gibt dabei „wortkarg“ wie auch besonders „redselige“ Tiere.
5.6. Korrelation der Laute mit Situationen

Im vorigen Abschnitt traten einige Lauttypen nicht auf, nämlich solche, die zu ihrer Auslösung eines Außenreizes bedürfen; es sind zugleich die Laute, die mit einer Haltung korreliert sind: Grüßen, Weinen, Warnen, Zischen.

Ermüdungsscheinungen in der Lautreaktion eines verlassenen Gossels treten erst nach Stunden auf und enden im Freien meist tödlich für das be-

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten 291

Abb 30: Korrelation der Laute mit der Distanz der Gössel von den Eltern. Mit zunehmendem Alter nehmen auch die Abstände der Gössel von den Eltern zu, innerhalb derer sie die Trillerlauten, Stimmfühlungslauten usw. äußern. Die die Lauttypen abgrenzenden Linien geben die maximale Entfernung an, innerhalb welcher der jeweilige Laut geäußert wird.

Weinen, später Distanzruf
Jammern
Stimmfühlungslauten
Triller
292

Iren WURDINGER

In der Familie aufwachsende Gössel warnen erst dann selbständig, wenn sie fast flugfähig sind (jedenfalls unter den Bedingungen in Seeviesen). Die von mir handaufgezogenen Gössel warnnten bereits vom ersten Tag an und zwar vor Flugobjekten. Später warnnten sie auch bei plötzlich auftretenden Reizen, wenn ich mich mit der Schar in fremder Umgebung aufhielt.

In der Familie aufgezogene Gössel sah ich erst recht spät, kurz vor der Flugfähigkeit, zischn. Das Zischen der handaufgezogenen Gössel richtete sich auf Gegenstände, wie das Mikrophon, wenn es zum ersten Mal gesehen wurde. Gegen unbekannte Lebewesen, wie Hunde, Katzen, Igel, Schlangen zischten die Gössel erst, wenn sie schleichende Erfahrungen mit den Objekten gemacht hatten. Erfahrungenlose, sehr junge Gössel (bis zu 5 Tagen Alter) grüßten die Objekte, ältere Gössel versuchten das Objekt zu fressen, zu beißen oder sie ignorierten es völlig.

Die Situationen, die von Stimmlaufslauten und Trillern begleitet sind, sind bereits im Kapitel über die Korrelationen von Tätigkeiten und Lauten in Erscheinung getreten.

5.7. Korrelation der Laute mit der Entfernung der Gössel von den Eltern

6. Funktion der Lautäußerungen

6.1. Reaktionen auf Laute

Eindeutige Reaktionen sowohl der Gössel wie der Eltern auf Laute sind nicht für alle Lautearten zu sichern.

6.1.1. Reaktionen der Eltern auf Laute der Gössel

Erzeugung, Ontogenie und Funktion der Laute war auch den Kopf dem Gössel zu, steht dem Gössel ab.

Stimmlaufslauten: Stimmlaufslauten werden nicht von den führenden Eltern beantwortet. Der Weg zur Wirkung unspezifisch „freundlich“.

Warnlaut: Auf den Warnlaut der Gössel

Angstschrei: Der Angstschrei eines Elternteils, die reinen oder fliegenden, gespreizten Gelenken und zischend oder nach dem Nahaufnahmen der Gänse möbten (mhn.)

6.1.2. Reaktionen der Gänse

Beschrieben werden hier nur die Reaktionen der Gänse.

Fortgehen: Eindeutig ist die Führungs-(Fortgeh)-läute der Gänse auch anderen Gänse als den Eltern weggehen oder -schwimmen.

Grüßen: In das Triumphgeschrei mit Grüßen ein.

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsarten 293

Jammern: Eine spezifische Reaktion auf Jammern war nur dann zu beobachten, wenn die Situation in Fortgelerhythmus geäußert wurden. Gösself der Art Anser caerulescens, deren Jammernlaute in dieser Situation in Weinen übergehen können, pflegen, wenn sie woanders hingehen möchten, mit Jammernlaute von den Eltern weg zu dem gewünschten Platz zu gehen, die Eltern reagieren, indem sie nachfolgen. Die Gösself der anderen Arten äußern in dieser Situation Stimmfühlungslauten im Fortgelerhythmus, die in Jammern übergehen können, auch hier folgen die Eltern.

Warnlaut: Auf den Warnlaut der Gösself reagieren die Eltern nicht.

6.1.2. Reaktionen der Gösself auf Laute der Eltern

Beschrieben werden hier nur die Laute, auf die die Gösself eindeutig reagieren.

Fortgelaut: Eindeutig ist die Nachfolgereaktion des Gösself auf die Führungs-(Fortgel-)lauten der Gans. In den ersten 6 Tagen folgt das Gösself auch anderen Gänse als den Eltern, wenn diese den Fortgelaut äußerlich weggehen oder -schwimmen.

Grüßen: In das Triumphgeschrei der Eltern fallen die Gösself regelmäßig mit Grüßen ein.

Wie Vns im Wacheleier festgestellt hat, reagieren Embryonen bereits in Ei auf Laute der Mutter. Die von mir im Brutschrank betreuten Eier
ließen in den letzten Tagen vor dem Schlüpfen eine deutliche Zunahme der Pickrate gegen die Eischale erkennen, wenn die Eier Lautkontakt mit mir oder mit anderen Eiern hatten. Gössel aus dem gleichen Gelege, die ohne einen solchen Kontakt blieben, schlüpften bis zu 36 Stunden später.

6.1.3. Reaktionen der Gössel auf Laute der Geschwister

Auf die Laute der Geschwister reagieren die Gössel schon im geschlossenen Ei. Tonbandprotokolle zeigen, daß das Jammern aus einem kalt gewordenen Ei aus einem warm liegenden mit Trillern beantwortet wurde. Der Disput „mir ist warm“ — „mir ist kalt“ setzte sich über 10 Min. fort, bis das kalte Ei in die Wärme befördert wurde, wo nach kurzer Zeit nur noch Trillerlaute zu hören waren.

Weinende Gössel synchronisieren sich so, daß für das Ohr und auf dem Spektrogramm die Töne der verschiedenen Gössel nicht zu trennen sind.

6.1.4. Reaktionen der Gössel auf Laute der eigenen Art

6.1.5. Reaktionen der Gössel auf Laute der anderen Arten

Die homologen Laute der Gössel anderer Arten werden 1 bis 2 Tage nach dem Zusammensein wie die der eigenen Artgeschwister beantwortet. Untersuchungen zur Reaktion von Gösslern auf Laute der erwachsenen Gänse anderer Arten sind geplant.

6.2. Funktion der Laute

7. Diskussion

7.1. Vergleich der Laute normaler und ausgewogener Gänse

7.2. Zur Homologie

In der Einleitung war die Hypothese aufgetreten, daß die vier Arten, je einander homolog sind. Prüfung auf Homologie erlauben; sie sind von Verhalten in der Analogie des Verhaltensmerkmals und vertreten nicht die Bedeutung der Verhaltensmerkmale, wie z.B. die Anzahl der Wechsel der Wechsel, die in der Umgebung der Geschwister sind, während sie sich mit ihren Geschwistern ausgetauscht haben.

a) Das Kriterium der speziellen Qualität

Verhaltensmerkmale sind um so sicherer, übereinstimmend und je komplizierter die Stimmungsharmonie, die man berücksichtigt die gleiche Anzahl der Stimmen, gleich bedeutende usw.

b) Das Kriterium der Lage im Gefüge

Bei Verhaltenweisen bietet sich aber die Möglichkeit, die Lage zu vorausgesetzten und rücksichtigen Bedingungen sowie der betreffenden Elemente in bezug auf einen Grund.
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

7. Diskussion

7.1. Vergleich der Laste normal und isoliert aufgezogener Gänse

Verschieden aufgezogene Gänse zeigten in den physikalischen Parametern ihrer Lauten keine qualitativen Unterschiede, wohl aber quantitativ.

7.2. Zur Homologie der Lauttypen

In der Einleitung war die Hypothese aufgestellt worden, daß die gleichbenannten Lauttypen der vier Arten je einander homolog seien. Es gibt eine Reihe von Kriterien, die eine Prüfung auf Homologie erlauben; sie sind von ROMANE (1956) und auf ihre methodische Brauchbarkeit im Rahmen morphologischer und anatomischer Untersuchungen prüft werden. Ihre Anwendbarkeit auf Verhaltensmerkmale ist von WICKLER begründet worden. Die Kriterien sind (nach WICKLER 1967, S. 426):

a) Das Kriterium der speziellen Qualität

Verhaltensmerkmale sind um so sicherer homolog, je mehr Sondermerkmale sie übereinstimmen und je komplizierter die Sondermerkmale je größer die Übereinstimmungen sind. man berücksichtigt die sichtbare oder hörbare Ablaufsform, ferner die Fülle zusätzlicher Sondermerkmale, wie Abhängigkeit von den übrigen Verhaltensweisen, Stimmungen, gleichbedeutenden usw.

b) Das Kriterium der Lage im Gefügesystem

Bei Verhaltensweisen bietet sich aber zunächst nur die Lagebeziehung innerhalb einer Dimension, der Zeit, zu voraufgehenden und nachfolgenden Verhaltensweisen an. Man berücksichtigt jedoch auch die Lage der betreffenden Verhaltensweise in bezug auf eine Reaktionsfolge des Partners oder bei Lautäußerungen des Rhythmus und die relative Lage der einzelnen Elemente in bezug auf einen Grundton . . .

7.2.1. Kriterium der speziellen Qualität

In diesem Absatz sollen nicht mehr alle Lauttypen einzeln besprochen werden. Es werden nur die Triller und das Weinen gegeneinander gestellt. Die Ablaufsform, d. h. Anstieg und Abfall der Frequenz bei den einzelnen Silben und die Aufeinanderfolge von Silben lassen eine deutliche Ähnlichkeit der Trillerlaute untereinander erkennen. Gleiches gilt für die Ablaufsform des Weinlautes, und wie Abb. 3 und Abb. 7 zeigen, läßt sich durch dieses Merkmal die Gruppe der Triller von der des Weinlautes gut abgrenzen.

Faßt man alle bisher gegebenen Werte für die einzelnen Lauttypen zusammen, so läßt sich sagen, daß bei allen Arten die Weinlaute durch größte Dauer der Silben, durch die größte Intensität, die heftigste Atmung usw. ausgezeichnet sind. Beziehungen ähnlicher relativer Ordnung finden sich ebenso für die anderen Lauttypen.

Auch Koppelungen mit bestimmten Halsbewegungen sind in diesem Alter bei den entsprechenden Lauttypen gleich; allerdings wird die charakteristische Haltung beim Grüßen, der lang nach vorne gestreckte Hals, nicht bei allen Arten auch vom adulten Tier beim Triumphgeschrei gezeigt. (Anser caerulescens hat eine abweichende Haltung; die Paare stehen beim intensiven Triumphgeschrei beinahe Brust an Brust, ohne den Hals in der bei A. indicus
oder A. albifrons typischen Weise gestreckt und entweder parallel oder gekreuzt zu halten.) Ebenso ist die mit dem Triller gekoppelter bohrende Kopf-Halsbewegung bei allen Arten vorhanden, sie kann jedoch unterschiedlich lang dauern.

7.2.2. Kriterium der Lage im Gefügesystem

Dieses Kriterium läßt sich nicht gleich eindeutig auf alle Lauttypen anwenden: Für Jammern, Stimmfühlungsauten und Trillen läßt sich die ideale Folge der Laute während des Ablaufes einer Handlungsbereitschaft herausziehen, die bei allen Arten gleich ist; für Weinen und Grüßen kann man die Reaktion der Gösse auf die Eltern betrachten.

Auf Grund dieses Ergebnisses darf die Vermutung, daß die Lauttypen homolog seien, als sehr wahrscheinlich gelten. Gleichzeitig ist auch die Einteilung in Typen gerechtfertigt worden.

Die Beweisführung auf Homologie ließe sich nach gleichem Schema auch auf die anderen Arten der Anatidae anwenden, dadurch könnte vielleicht auf die Phylogenie der Laute in dieser Gruppe geschlossen werden.

7.3. Übergänge zwischen den Lauttypen

Bisher wurde von den Lauttypen gesprochen, als wären sie ideale Typen. Es gibt jedoch durchaus Übergänge.

Mehrsilbige Lauten:

Stimmfühlungsauten können fließend in Triller übergehen (Abb. 31 a). Der Anteil an Stimmfühlungssilben kann bei den Trillern bis auf eine Silbe reduziert werden; die Stimmfühlungssilbe, die dann immer am Anfang steht,

Erzeugung, Ontogenie und Funktion der
wirkt wie eine Art Vorschlag und kann individuell werden. Übergangsformen Trillerlaute machen während der erst en Schen 17% und 22% der geäußerten Trillermengen. Übergänge vom Triller zum Stimmtyp wurden nicht gefunden.

Stimmfühlungsauten und Grüßen, so treten gegen Ende einer Periode von Stimmfühlungsauten auf; umgekehrt können sie, es finden sich alle intermediären wieder.

Einsilbige Laute:

Einsilbige Stimmfühlungsauten können umgekehrt vom Vorgang habe ich ni.

Abb. 31 a: Übergänge vom Stimmfühlungsaut zum Triller.
Obere Reihe: Anser indicus, 5 Tage; A. caerulescens, 3 Tage; Untere Reihe: A. albifrons, 1 Tag; Branta canadensis, 14 Tage.
(Zu Abb. 31 a/b und 32)
Ordinate: Der Abstand der Frequenzmarken beträgt 1000 Hertz; die Markierung beginnt bei 1 kHz
Abszisse: Der Abstand der Zeitmarken beträgt 0,5 sec.
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten 297

wirkte wie eine Art Vorschlag und kann geradezu charakteristisch für ein Individuum werden. Übergangsformen zwischen Stimmfühlungslauten und Trillerlauten machen während der ersten 10 Lebenstage bei allen Arten zwischen 17 % und 22 % der geäußerten Triller aus; später werden sie selten. Übergänge vom Triller zum Stimmfühlungslaut oder zu anderen Laутen wurden nicht gefunden.

Stimmfühlungslauten und Grüßen können leicht ineinander übergehen; so treten gegen Ende einer Periode von Grüsslauten sehr regelmäßig Stimmfühlungslauten auf; umgekehrt können Stimmfühlungslauten in Grüßen übergehen, es finden sich alle intermediären Stufen der physikalischen Paramter wieder.

Einsilbige Lauten:

Charakterisiert durch einen auffälligen Rhythmus und höhere Intensität können Stimmfühlungslauten wie Jammerlauten als Fortgehau auftreten. Welcher Lauttyp geäußert wird, ist abhängig von der Möglichkeit des Gösels,

Abb. 32: Jammerlaute im Fortgelarhythmus.
Oben: Anser indicus, 3 Tage alt; unten: A. caerulescens, 3 Tage alt

Ein deutlich erkennbarer Rhythmus ist bei Anser indicus (180 Laute je Minute) und A. caerulescens (bis 240 Laute je Minute) schon ab dem dritten Lebenstag vorhanden, bei den anderen Arten habe ich einen typischen Rhythmus erst zu Beginn der Flugfähigkeit gehört.

Zu Warnen und Zischen waren keine Übergänge feststellbar.

7.4. Lautreihe

Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

steigt die Erregung an, einsilbige Laute steigender Intensität und zunehmender Dauer der Silben. Diese Koppelung erscheint gesetzmäßig!

Die Laute, welche nicht mit bestimmten Bewegungen, Tätigkeiten, ja Situationen gekoppelt sind (Trillern, Stimmfühlungsraute, Jammern), können jederzeit „überlagert“ werden durch die an charakteristische Bewegungen und an eindeutig definierte Außenreize gebundenen Laute (wenn der entsprechende Reiz geboten wird, Grüßen, Weinen). Dies unterstreicht die eminent Bedeutung, die die letztgenannte Gruppe von Lauttypen hat.

Man könnte also die zwei Gruppen gegeneinander abgrenzen:

Zusammenfassung

Untersucht wurden der Mechanismus der Lauterzeugung, die Ontogenie der Lautäußerungen in Zusammenhang mit der Entwicklung der anatomicen Strukturen und die Korrelationen der Lautäußerungen mit Tätigkeiten und Situationen.

Die Untersuchungen an lebenden Tieren wie auch die Anblasversuche an toten Tieren begründeten die Vermutung, daß nicht die tracheale Muskulatur, sondern der Druck im Saccus cl. die für die Lauterzeugung notwendige Spannung der Membranae tympaniformes hervorruft. Eine syringale Muskulatur fehlt den Gänsern.

Frequenz und Intensität der Laute stehen in folgender Beziehung zu den anatomischen Strukturen: die Frequenz erscheint negativ korreliert mit der Größe der Membranae tym., die Intensität negativ mit der lichten Weite der Trachea, beide positiv mit dem Druck im Saccus cl.; außerdem haben noch einige andere Faktoren wie Größe und Öffnungsweite des Schnabels einen Einfluß auf die Intensität.

Bereits im Ei sind Jammern, Stimmfühlungsraute und Trillern feststellbar. Kurz nach dem Schlüpfen, so das Gösse die Bewegungen seines Körpers unter Kontrolle haben, treten auch die mit bestimmten Bewegungen gekoppelten Laute, Weinen, Grüßen, Trillern auf.

Zur Zeit des ersten Auftretens sexueller Bewegungsweisen ist ein Stimmbruch feststellbar; außerdem wird das Weinen von dem weniger intensiven und tieferen Jammernachle so von dem die soziale Wirkung des Weinlautes übernehmenden Distanzruf abgelöst.

Aus der Änderung der physikalischen Parameter der Laute ist, in einem gegebenen Zeitpunkt, eine Änderung des Erregungszustandes der Tiere abzulesen.
Jammern, Stimmfühlungsleute und Trillern kennzeichnen den Beginn einer Handlungsbereitschaft, den Handlungsablauf und die Sättigung der Bereitschaft unabhängig von der Art der Handlung oder dem Drang, der dieser zugrunde liegt.

Grünen und Weinen sind abhängig von einem bestimmten Drang, dem Bindungstrieb (nach Fischer 1965).

Die Funktion der Laute wurde in der Erhaltung der Bindung Götze — Eltern und in der Synchronisation der Handlungen einer Familie gesehen.

Summary

Production, development and function of the vocalisation of four goose species (Anser indicus, A. caerulescens, A. albifrons and Branta canadensis)

1. The mechanisms of sound production, the ontogeny of calls in relation to the development of the anatomical structure, and the correlation between calls and actions or situations were investigated.

2. Investigation of live birds and blowing experiments (Anblasversuche following Ruppell, 1933) with dead birds confirmed the hypothesis that the pressure in the sacculus claviculatus, and not the tracheal musculature, causes the tension of the membranae tympaniformes necessary for sound production. Syringleal musculature often described for goose was not to be found.

3. Frequency and intensity of the calls have the following relationships to the anatomical structure: frequency seems to be negatively correlated to the size of the membranae tympaniformes, intensity is negatively correlated to the diameter of the trachea, both are positively correlated to the pressure in the sacculus claviculatus. A few additional factors, such as size of the bill and width of the opening, have an influence on the intensity.

4. Even whilst the goose is still in the egg it is possible to hear trills, contact-calls and lament-calls. Shortly after hatching, as soon as the movements of the gosling are coordinated, those calls which are correlated with definite movements (e.g. greeting, trilling, distress-calls) are observed.

The absolute values change, however: the frequency decreases in proportion to the growth of the trachea and the membranae tympaniformes; the intensity increases in proportion to the diameter of the trachea and the other factors mentioned. Measured according to their physical parameters, the positions of the various calls in relation to each other remain the same throughout the entire observation period.

The voice begins to break when the first sexual behaviour patterns occur.

Distress-calls are replaced by the less intensive and deeper lament-calls and by the distance-calls, which take over the social role of the distress-calls.

Conditions of low excitation the calls are soft and multisyllabic. As the bird becomes more excited, the calls become louder and have fewer syllables.

Lament-calls (uttered with or without a particular rhythm), contact-calls and trills are, in that order, characteristic of the beginning of a behaviour pattern, the pattern itself and the end (e.g. feeding, drinking, preening). These calls are independent of the type of the behaviour pattern and the drive that causes them.

Greeting and distress-calls (trumpeting adults) depend on a definite drive, (Fischer 1965).

5. The function of the calls is to form and synchronise actions within the family.
Erzeugung, Ontogenie und Funktion der Lautäußerungen bei vier Gänsearten

5. The function of the calls is to further the gosling-parent bond and to synchronize actions within the family.

Literaturverzeichnis

thol. 77, 352–386

ELOER, W. H., and N. L. ELLER (1949): Role of the family in the formation of goose flocks. Wilson Bull. 61, 133–140

HANSON, H. C. (1953): Inter-Family dominance in Canada geese. Auk 72, 11–16

HANSON, H. C. (1953): The incubation path of wild geese; its recognition and significance. Arctic 12, 139–150

KLOPSTON, R. B. (1961): The peeping call of the Canada goose. Mag. of Ducks and Geese 12, 6–9

KLOPSTON, R. B. (1961): Social behavior in the Canada Goose. The living bird, Cornell Laboratory of Ornithology

LORENZ, K. (1953): Gesamtwahrnehmung als Quelle wissenschaftlicher Erkenntnis. Z. exp. u. angewandte Psychol. 6, 1, 118–165

MONEY, M. (1955): Remarks on the original sources of display. Auk. 72, 242–246

NAU, J. (1964): Naturgeschichte der Vögel Deutschlands, Leipzig

Über die Flugrichtungen von Vögeln in Abhängigkeit vom Heimathort

Von Hans E. ...

Eingegangen am 13. 2. 1969

A. Einleitung

Nachdem es bisher nicht gelungen war, die Mechanismen aufzufinden, die den Flug von Vogel und anderer Vögel zugrundeliegen, haben wir es sogleich mit dem direkten Erfolg der Brieftauben versucht. Vielmehr werden wir versuchen, die Verbindung zu den gesuchten Vögel- und anderen Tierarten genügt immerhin, um nach regelrechten und empirischen Daten zu sammeln. Es gibt Bedingungen, die analysieren, die beim Flug der Brieftauben eutherm einschließlich der Kausalanalyse zu knüpfen ermöglichen und verminderung der Phänomene im Auffliegen deinem Ergebnis..

Erste Erfolge auf dem so gefährlichen Heimkehrverhalten der Brieftauben sagen, daß wir damit bei der Erforschung der Phase erreichbar haben. Vorausgegangene Phase erscheint eine Phase, in der zum Heimatschlag betrachtete, daß sich gleichartige Brieftauben in drei Phase stellten sich dann die Phase heraus. Das Heimkehrverhalten variabel, und es zeigte sich bald, handelte, sondern offenbar...